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Abstract

Electric energy stored insupercapacitors is associated with ion movement
between the porous electrodes . This phenomenon can be described by
dielectric relaxation model. Cole-Davidson relaxation model application 
reported in publications is difficult to use for control purposes. In the paper for 
impedance of the supercapacitors description Cole-Cole relaxation model is 
applied. For impedance parameters identification Nedler-Mead simplex method 
is used. Supercapacitor impedance model simplification based on physical 
properties is presented. Such model can be easy used for calculations in Matlab
environment with FOTF toolbox designed to fractional calculus. The example 
of modeling of dynamic system with supercapacitor impedance model is 
described. The effects of the simulation show that fractional model of
superapacitors is important tool for exact description of its dynamics. 
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calculus, control systems

1 Introduction

Supercapacitors are electronic elements having the properties between
electrolytic capacitors and accumulators. Capacitance of the supercapacitors
reaches several thousands of farads. They can reach energy and power densi-
ties of more than 10 Wh/kg and 10 kW/kg respectively. The possibility of 
large electric charge storage is obtained due to porous electrodes made of
active carbon, graphene, carbon nanotubes or aerogel. Supercapacitors are 
used in many applications: for protection of computers from input power in-
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terruptions, as power supply of robots, toys, electric toothbrushes etc. Recent-
ly they are increasingly used in electric vehicles for braking energy storage
and its delivery during acceleration. 

Electric energy stored insupercapacitors is associated with ion movement 
between the porous electrodes of large surface and relatively large resistance.
This phenomenon causes that the typical equivalent models of capacitors that 
contain one or two lumped parameter RC circuits are not sufficient for accu-
rate representation of dynamic properties of the supercapacitors. In the result, 
for this purpose, the complex equivalent schemes with many connected RC
elements [1] or fractional differential equations [2, 3] are used. 

In the paper, for impedance of the supercapacitors description fractional 
order calculus and model of dielectric relaxation are applied. Dielectric relax-
ation can be described by few models [4]. It was reported that Cole-Davidson 
model application is well for exact modeling of the supercapacitors [4, 5, 6]
but its application in automation is difficult. The paper presents Cole-Cole
model application for such purposes. 

2 Cole-Cole and Cole-Davidson models of supercapacitor 
impedance 

Classic Debye model of ideal dielectric relaxation is in practice replaced 
by its empiric modifications [4]. Such modification is presented by Havriliak-
Negami model of complex dielectric constant, expressed as equation 

  



, 0    1 0<  1, (1) 

where
ε∞ � infinite frequency dielectric constant, 
εs � static frequency dielectric constant, 
T�characteristicrelaxation time of the medium. 

For γ=1 equation (1) becomes Cole-Cole equation

  



,  where 0    1 (2) 

and for δ=1 it becomes Cole-Davidson equation 

  



, where 0    1 (3) 

Parameters δ and γ are determined experimentally. 
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Figure1. Equivalent circuit of supercapacitor

The expression of the real supercapacitor impedance can be based on one 
of above equations of complex dielectric constants but it should also contain 
parallel leakage resistance Ru and serial equivalent resistance Rc (Figure 1) 
[5, 6]. As a result supercapacitor impedance is given by equation 

Z  R


1



1



(4) 

where capacitance C(jω) is proportional to complex dielectric constant (1). 
Additionally, for the supercapacitors, can by assumed that 

ε ≪ ε (5) 

Let us replace Fourier transform with Laplace transform. Impedance of su-
percapacitor Z(s) can be treated as fractional transfer function G(s) with cur-
rent input signal transform I(s) and voltage output signal transform V(s). On
the basis of Cole-Davidson model (3), equations (4) and (5) one obtains the 
expression of supercapacitor impedance [5, 6]

R

R
u C(jω)=C0ε(jω

)
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Transfer function is commonly in automation presented as [2, 3]


  ⋯  

∝∝  ⋯   ∝
(7) 

Such a form of fractional transfer function can be directly used for calcula-
tion e.g. applying numerical computing environment Matlab with FOTF tool-
box [7, 8] designed for fractional calculus. 

Unfortunately equation (6) can�t be directly expressed in form (7) because
of presence binomial to a fractional power γ [6]. The same complications are
connected with Havriliak-Negami model.

To avoid that issue one can apply Cole-Cole model of dielectric relaxation
given by expression (2). Using the same transformation as for Cole-Davidson
model, one can obtain equation

s
1



   1



  

1








(8) 

Taking into consideration parameters of the supercapacitor equation (8)
can be simplified. At the beginning it is worth to notice that serial resistance
Rc is several order of magnitude lower than parallel leakage resistance Ru 




≪ 1 (9) 

This inequality leads to expression 
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(10)

Generally transfer function (10) can be written in form
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     (11)

which corresponds to (7). 
Ruvalue can be determined from supercapacitor self-discharge curve. As a

result the value of a0 coefficient is known 


1


(12)

Taking into account the value of a0 and the following equality 

   (13)

it can be written that 





  (14)

Summarizing, one can find that omitting Rc for determination of model 
(11) only 4 parameters should be identified:a2, b1, b2 and δ. This identification 
can be based on the measurements of complex impedance values for the ap-
propriate frequency range. 

Identification of model (11) parameters can be performed on basis of mi-
nimization of performance index


1




 



2

1

(15)

where
GCC � transfer function (11), 
Gp � measured frequency response of the supercapacitor,
ωi � frequency of measured point.

Chosen performance index corresponds to the variance of moduli of rela-
tive errors of the frequency response points, related to appropriate points of 
approximation function (11). For minimization purpose Nelder-Mead simplex
method was used. This optimization problem is multi-modal so proper start 
point should be chosen. Fortunately the coefficients in expression (11) can be 
roughly estimated on the basis of estimation of supercapacitor physical para-
meters.  
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Measured frequency responses of supercapacitors presented in the paper, 
are based on data published in [5, 9, 10]. The example of transfer function 
calculated for 2700 F supercapacitor using data [10] is 

Gs
1  0.869s.  0.632s

0.00200  0.00174s.  2020s
(16)

The result of the approximation of the frequency response (16) is presented 
in Figure 2. Another example is the impedance of the supercapacitorof 
0.047 F capacitance [5]. Its transfer function is

Gs  1000
1  2.44s.  1.65s

0.010  0.024s.  58.7s
(17)

The frequency diagram of (17) is shown in Figure 3. 
The basis for comparison of the accuracy of approximation for different 

supercapacitors can be performance index Jf (15).The square root of Jf corres-
ponds to standard deviation of the error. For supercapacitors taken into con-
sideration standard deviation of error is equal a few percent.

Figure 2. Measured frequency response points (asterisks) and approximating func-
tion (16) for 2700 F supercpacitor
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Figure 3. Measured frequency response points (asterisks) and approximating func-
tion (17) for 47 mF supercapacitor

3 Cole-Cole model simplification and time response 

On the basis of the results of the impedance approximation of supercapaci-
tors of capacitance between 0.047 F and 2700 F it can be stated that for all 
those examples model (11) can be simplified. The denominator of expression 
(11) can be written as 

     (18)

where

     (19a) 

   (19b)

It was proved that the ratio of  
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||
||

≪ 1 (20)

which means that the term GCCd2 practically has no influence on frequency 
response of the supercapacitor. In Figure 4 are shown graphs of S(ω) for vari-
ous supercapacitors which frequency responses are presented in [5, 10]. 

Figure 4. Frequency dependence of ratio S (18) for various supercapacitors

It can be mentioned that S(ω) strongly depends on exponent δ value. Typi-
cal value of δ for the capacitors is between 0.5 and 0.9. Graph of S(ω) for
0.6 F supercapacitor [10] is presented in Figure 5. Identified value of δ for this 
supercapacitor is 0.82. Other plots were calculated for hypothetical cases with
lower values of δ. 

Basing on current analysis one can determine the simpler model of the im-
pedance of the supercapacitor. Omitting term GCCd2 the simplified expression 
is given as 

s
1   

 
(21)

0.33 F

0.1 F

0.047F

2700F
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Figure 5. Ratio S(ω) for supercapacitor 0.6F

Consequently the impedance of e.g. 0.33 F supercapacitor [5] can be writ-
ten as 

Gs
1  13.5s.  0.632s
1.65e  07  0.340s

(22)

For the further analysis expression (21) can be decomposed into three sim-
ple fractions 


1   

 
      (23)

where

   (24a) 




1 
(24b)

δ=0.75 (hypothecical) 

δ=0.6 (hypothectical)

δ=0.82 (identified) 



Computer Modeling of Supercapacitor ... 

114 




1 
(24c) 

In Figure 6 are shown moduli of frequency responses of each term of (23) 
and modulus of Gcc. The terms are asymptotes of Gcc(s). The slope of loga-
rithmic plots for Gcc2 is -20 dB per decade of frequency and the slope of Gcc3

is -20*(1-δ) dB per decade of frequency.

Figure6. Moduli of terms of equation (22) and modulus Gcc for supercapacitor 
0.33 F

Voltage response of impedance (23) to current step is a sum of responses
of mentioned 3 terms: proportional step, exponential response of large time
constant RuC, and response dependent on fractional order term. The voltage
response for I0 magnitude of current step can be written as 

  1
0





1 




1 
  1  2  3 (25)

where

Gc3

Gcc

Gcc1 

Gc2
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(26b)
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(26c) 

For time t<<RuC the two first terms causes step summed with quasi-linear 
increase. The third term is responsible for initial non-linearity � Figure 7.  

Figure 7. Current step response of supercapacitor of 0.33 F 

4 Cole-Cole model application in control systems analysis 

It has been mentioned that for fractional calculus the numerical computing 
environment Matlab with FOTF toolbox [7] can be applied. Matlab environ-
ment is well known and widely used tool for modeling and simulation of 

v
cc2

(t)

v
cc3

(t)

v
cc

(t)

v
cc1

(t)



Computer Modeling of Supercapacitor ... 

116 

physical systems. Using Control Toolbox one can study and design control
systems. FOTF toolbox enables fractional calculus providing functions for:
 fractional transfer function object creation, 
 presentation of Bode and Nyquist plots of this transfer function, 
 calculation of time response on basis of transfer function and time input 

signal, 
 addition, subtraction, multiplication and inversion of created models,  
 feedback connection of such models, 
 determination whether system is stable. 

Presented example of FOTF toolbox application is design of resistor
/capacitor voltage divider of inertial properties consisting of resistor R0=5kΩ
and supercapacitor of C=0.1F (Figure 8). 

Figure 8. Scheme of the voltage divider

This divider shown in Figure 8 is described by equation 




 
  


(27)

where

Gs
1  4.67s.  5.01s

5e  08  0.1s
(28)

One can specify FOFT object for (28) and enter it into MATLAB. Vectors 
formulated according to form (7) are input parameters of such an object. They 

R
c

R
u C(jω)=C

0
ε(jω) 

Supercapacitor 
Vin Vout

R
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contain coefficients ai, bi and exponents of s defined in (21). For (28) these 
vectors (in the reverse order) are equal

     0.1 5  08 (29a) 

  1 0 (29b)

    1  5.01 4.67 1 (29c) 

  1  0  1 0.705 0 (29d)

In the next step the FOFT objects of (28) and Ro should be created 
Gcc=fotf(wa,pa,wb,pb); 

R0=fotf([[1],[0],[5000],[0]); 

Then according to (26) these objects should be added 
G1=plus(R0,Gcc); 

inverted 
G1i=inv(G1); 

and multiplied 
Gd=mtimes(Gcc,G1i); 

The calculated transfer function of considered divider is equal to 


5  08  2.34  07.  0.1  0.470.  0.504

5  08  2.34  07.  0.1  0.470.  51
(30)

This transfer function has been compared with transfer function of di-
vider with capacitor in which the relaxation phenomenon can be neglected. 
Impedance of such idealized capacitor of capacitance Ci=0.1 F is similar to 
(10)  

  


1



1


≅
1 
1





1  5s
5e  08  0.1s

(31)

Transfer function of the divider with this capacitor is 
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(32)
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Bode plots of Gd(s) and Gi(s) are compared in Figure 9. The influence of re-
laxation phenomenon on frequency response is distinct for higher frequencies. 

Figure 9. Bode plots of transfer functions of the dividers with supercapacitor and
idealized capacitor 

idealizedcapacitorr 

supercapacitorr 

supercapacitorr 

idealizedcapacitorr 
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Figure 10. Step responses of the dividers

Figure 11. Pulse responses of the dividers 

idealizedcapacitorr

supercapacitorr

supercapacitorr 

idealizedcapacitorr 
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The step responses of both dividers are presented in Figure 10. They are
convergent with the time rise. The essential difference at the beginning of the
time responses is presented by the plots of time responses to short input pulse 
of 0.2 s duration (Figure 11). 

Taking into account the difference between time and frequency responses
of models of fractional and lumped parameters one can state that the fractional
model of superapacitors can be important for exact description of its dynam-
ics. 

5 Conclusions 

The technical literature mostly concerns the supercapacitor models with 
Cole-Davidson relaxation model application. In the paper the computer model 
of supercapacitor impedance based on Cole-Cole relaxation modelis pre-
sented. Consequently the impedance has polynomial form commonly used in 
automation. It enables the analysis of various control systems containing su-
percapacitors. For this purpose Matlab environment with FOTF toolbox de-
signed to fractional calculus can be applied.  

In the studied examples Cole-Davidson model in general is a bit more 
accurate for frequency and time responses of real supercapacitor approxima-
tion but advantages connected with easy analysis and simulation of control 
systems is essential. The comparison of practical effects of both relaxation 
models application in control systems analysis will be subject of the next pub-
lications.  

In general it can be stated that the fractional model of superapacitors 
can be important tool for exact description of its dynamics.
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