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Abstract

The true digital terrain map (DTM) is needed to calculate so-called terrain 
gravity potential. It is one of the fundamental factors in earth geoid shape 
determination. There are many methods of calculation of the gravity potential. 
The gravity integral should cover all Earth area. There is no possibility to
establish digital terrain map for whole planet. So it must be numerically proved,
if the gravity integral converges to its extreme value for some limited part of the 
earth area. The model of DTM was established mathematically for testing a 
different way of gravity potential calculation. It contains all features of real 
DTM and has been build up in two steps processing. 
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1 Introduction

A modern information technology is widely implemented in present geo-
desy and cartography. The new measurements technologies like a GPS, laser
and radar scanning, gravimetry and gravity gradient measurements allows the 
precise earth surface mapping with high accuracy that was earlier unavailable. 
The investigation of an earth figure is impossible by direct measurements and 
usually has been done by some theoretical models. The fundamental model of 
earth figure determination is the Stokes method and the modified Stokes � 
Helmert method [2,9,11,12]. There is no possibility to integrate gravity ano-
maly reduced to see level over an all geoid�s surface, or, like in modified by 
Molodensky the Stokes�Helmert method, over all physical earth surface. The 
integration needs some approximate downward continuation of gravity ano-
maly to see level and surface condensation of the mass over geoid. The results 
are non accurate [15,16,18]. In modified method Stokes integral is made over 
physical earth surface gravity anomaly and the result are quasigeoid and 
height anomaly. The direct and  indirect effect of topography must be derived
to evaluate quasigeoid height over geoid. The rigorous determination of ter-
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rain mass potential is in work [8] and approximate one in work [9]. The cor-
rect determination of a topographic potential at any point on Earth needs a 
knowledge of  the mass decomposition over all geoid surface. This is actually 
unrealistic, so all calculation has been done by assumption of local constant
mass density and knowledge of the topographical height mass over geoid. The
approximate value of a topographic potential we get by integration of point
mass over all volume topographic mass by some assumption about its density.
The main problem in this estimation is, how great is an approximate error. 
Moreover, using different Earth models (sphere, ellipsoid, plane), we may
question, if   simpler or more complex model of geoid is needed 
[13,15,16,17], to obtain acceptable accuracy. The answer rarely is possible by 
theoretical consideration, because of problem complexity. The solution gives 
a numerical calculations. The potential integration over mass needs a great
base of data from area involving territories of many countries. It�s accessibili-
ty is not always possible, because of  the administrative law of different coun-
tries. It is difficult to estimate, how great area potential integrals must cover, 
theoretically over all Earth surface, to obtain sensible accuracy. The similar 
problems appear by attempts of improving the model of geoid, as a geodetic
reference frame for calculation of the topographic potential. The calculations 
based on assumption of a constant terrain height are far from real situation [8].
To avoid this problems in real testing of different theoretical models,  in this 
work there is proposed some model of digital terrain map (DTM). It may help
to test some theoretical solutions of geoid determination. The similar option 
we find in work of Kryński J. [9].

2 The requirements a Model of the DTM 

The digital terrain model must have all characteristic features of real land. 
It must contain a great topographical features like lowlands, highlands, pla-
teaus, mountains, without lakes or rivers, small depth, sizes and smaller densi-
ty. The theoretical requirements about size of such model are unknown, but it
seems that area size 2000kmx2000km is sufficient. This mean geographical
size 15o-20o from south to north and the same from west to east. Besides that
great size features it is necessary to build from the ground base local small
topographical structures like hills, abrupt, mountain peaks. The numerical 
calculation of gravity potential on Earth surface with appropriate accuracy
non averaging local height must be done on grid range of 20-30m, it means 1� 
in geographical latitude and longitude. Only such grid will be adequate on 
terrain with slope inclination great than 20o (100m of distant means 20m or 

more of height difference). It means construction of  at least 
94 10 points

with defined height and density. It seems reasonable to build at first complete 
DTM, because of time-consuming numerical arithmetic. The basic DTM is to 
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big to put it in one memory set, so we need to divide it into smaller parts and 
build convenient access tools to required fragments. General coordinates of 
each point are two integer numbers and number of adequate part of base 
DTM. It�s easy to transform this coordinates to geographical or geodetical
longitude and latitude, and consecutively Cartesian or geocentric coordinates
at any place on the Earth model (sphere, ellipsoid, plane).  

3 The Representations of the Big Topographical Features  

The building of topographical feature is like some kind of  an artistic work 
and means creation of fictitious terrain images with all mentioned earlier big
elements. Because of its great size first basic map is build on grid sized about 
0.5kmx0.5km (16�x16�). The height on denser grid are going to be calculated
algorithmically by assumption of constant inclination the planes build on rare 
ground grid. The plane is defined unambiguously by three points of a grid, so
the base of denser grid must be a triangular net. Its going to be defined fur-
ther.  

Now we define ground requirements of DTM. 
A look at any map of scale 1:1000000 shows presence lowlands, high-

lands, low (8001500m) and high mountains (tops over 2000m). On the large 
scale maps contours are relatively simple, without sharp turns. From lowlands 
grow up highlands, from highlands grow up mountains. The layers arrange-
ment  has multi-pyramid structure. This allows build up similar structure by 
mathematical methods. The Gauss function of two variables  seems to be es-
pecially useful: 

2 2 2
0 0g(x, y) h exp( [(x x ) (y y ) ] / d )      (1) 

It doesn�t has to be normalized for purpose of this work and its values shape 

on xy plane forms regular circular hill with center in 0 0(x , y ) point and height 
equal  h.  Of course this regular shape needs some modifications, like irregu-
lar changes of slope inclination in different directions and distances from the 
top. The another modifications must take account, that geological structures 
have irregular directions against meridians and parallels.  H parameter allows 
to control a maximal height of model�s geological structure. Parameter d con-
trols size of a structure. By assuming that 1/16 of maximal height is a border
of modeled geological structure we find for this value distance 1.67d. So d
parameter is good rating of structure size. We use function g defined by (1) to
establish height at any DTM point.

For mathematical reason a rectangular grid was chosen as an integer coor-
dinate base size (N+1)x(M+1). For convenience (real distance) every point 
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coordinate were calculated in km as (x,y)=(D*i,D*j); i(1,N+1), j(1,M+1), 
D is size parameter in km (D=0.5km for fundamental map).  

Next step is to randomize the regular gaussian hill. It may be achieved by 

some functional transformation of map area and height�s evaluation  h(x, y)

as g(x�,y�) at every point of DTM: 

[x ', y '] f ([x, y]);

[x, y] r;    [x ', y '] r '

h(x, y) g(x ', y ');



 


 
(2) 

4 The Randomized Transformation of the Map Coordinates 

A first step of coordinate transformation is rotation around a center point

0 0(x , y )  and elongation along one of axes. We rotate reference system by 

angle  and multiple one coordinate, for example y�, by k . The result is: 

0 0

0 0

2 2 2

x ' (x x )cos (y y )sin ;

y ' (x x )sin (y y )cos ;

g(x ', y ') h exp( [x ' k y ' ] / d );

    
      

    

(3) 

We obtain the last effect introducing a changeable rotation angle . It may be 
function of azimuth A, where A is angle in polar coordinates with pole 

0 0(x , y ) . The A angle is periodic, so (A) must be a periodic function: 
(0) (2 )    . In this work the following functions were chosen:  

0

0

0 0

2

0 2

y y
A arctg ;A 0,2

x x

(A) cos A;         (A) sin A;

(A )
(A) cos(A)

 
     

     

 
  



(4) 

Below on Figure 1-4  are shown some effects of transformation (3) and (4)
for rectangular area. We see contour   graph of  function (2) after transforma-
tion its rectangular domain. 
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Figure 1. elongation k=4, 0=1.5, d=200, =0 cosA 

Figure 2. k=0.15, 0=0.95, d=60, =0 sinA
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Figure 3. k=5, d=80, 0=1, =0 ( (A-)/)2     

Figure 4. k=5, d=80, 0=1.1, =0 ( (A-)/)2 sinA   

The above presented shapes are still too regular in comparison to acciden-
tal tectonic forms. The height of the real tectonic forms sometimes grows up, 
sometimes decreases, moreover they have many tops. In polar coordinates 

with pole 0 0(x , y )  g function is decreasing monotonously and only by appro-
priate arguments transformation we may achieve multi-tops effect.  Let
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2 2v x k y   means a new g function argument. This is distance from a 
center of the �hill�. We use a following function F(v,k) as a distance trans-
forming function:

2
1 2 1 2

1 2

F(v, k) v {1 exp[ (v v )(v v ) (v v ) / 4

                                    k ln((v v ) / 2)]}

        
  

(5) 

The parameter k means the same elongation constant k as in (3). We see the 
plot of function F(v,k) on Figure 5 below. 

Figure 5. Plot of function F(v): layered three  function for k=0 and k=0.2. For com-
parison doted line is a plot of linear function f(v)=v. 

This function allows to create multi-top plateaus and mountains by control
k values as function of azimuth A. The average arithmetic value of few F(v,k) 
function  allows a precise modeling of  a hilly or mountainous area of  the 
DTM (see Figure 6). 
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Figure 6. The way of modeling the multiple hills area. 

The next step of creating the DTM is controlling a ridge direction and  in-
clination. For our purpose two ridges of any hill are sufficient . We choose 
two random directions (two azimuths A1 and A2) from interval <0,2) and 
two DA1, DA2  from interval < 0, /2 >. The firsts are direction and the
second broadness of a hill ridges. Because the random number generator is 
determined, action begins with generating a few random numbers. The para-
meter k is multiplied by function of azimuth fg(A), it is simply sum of two 
Gauss function: 

2 2 2 2
1 1 2 2fg(A) b exp( (A A ) / DA ) exp( (A A ) / DA )       (6) 

This function must be periodic and continuous inside <0,2>, to avoid
fault for azimuth zero: fg(0) = fg(2). The strict formula of function fg(A) is: 

1 1 1

1 1

1

1

fg(A) fg(p(A));

p(A;A ) (A A )[sign(A) sign(A A )] / 2

                        (A A 2 )[sign(A 2 ) sign(A A )] / 2

                       (2 A )[1 sign(A)];                           

 p(A;A ) (


       

         
  

   1 1

1 1

A A )[sign(A A ) sign(A 2 )] / 2

                         (A A 2 )[sign(A) sign(A A )] / 2 ;   

      
      

(7) 

The plot of  periodic Gauss function  inside interval <0,2> shows Figure 7
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Figure7. The periodic Gauss function  inside interval < 0, 2 >, A1=0.6, DA=0.6.

The composition of two fg functions controls k parameter in transforma-
tion (5) (see Figure 8 below).  

Figure 8. The sum of two periodic  Gauss function inside < 0, 2 >, A1=0.6, 
DA1=0.6, A2=3.9, DA2=0.95, b=3.
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We calculate height at point (x,y), so we need unambiguously evaluate the 
azimuth A at every point relative polar reference system with the center in a
top of the hill. Easily to check, that function:




y
A f (x, y) sign(y) [1 sign( x )] arctg sign( x )

2 x

               sign(y) [1 sign(x)] [1 sign( y )] [1 sign(x)]
2

              [1 sign( x )] [1 sign(y)] ;  

          
 


        

   

(8) 

satisfied this conditions. 
The constants v1 and v2 are multiplied by function fg(A) and next f(F(v)) 

is evaluated. Finally to increase impression of naturalness f(v) it is multiplied
by polynomial of degree 4 of A variable: 

1 2z(A) a c A(A A )(A A )(A 2 ) / (max(z) min(z))        (9) 

where a and c � free constants. 

5 Building a Model of the DTM. 

There is shown action of the above functions in building a model of the 
DTM. In first step it is set a number of  highlands and mountains at area of 
DTM. For our purpose we set four highlands with maximal height range 100-
250m, two middle mountains height range 1200-1600m and one mountains 
with  maximal height 2500-3000m. We set central coordinates of each forma-
tion, its size, elongation, initial rotation angle and v1 and v2 constants. Then
the grid and scale size D is established, in this work N=4000, M=4000 and D
=0,5km. So basic DTM covers area 2000x2000 km and contains 16008001
points with evaluated height. Numerical program sum up heights of all ele-
ments evaluated over all DTM area and saves it in matrix h(x,y). Figure 9 
shows summarized colored contour plot of matrix h(x,y) evaluated for smaller 
grid size 800x600km. 
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Figure 9. Summarized colored contour plot of matrix h(x,y).

Because of great scale of this map, some of fragments seems to be poor, 
without details. But enlarged left lower and upper right quadrant looks much
better and shows appreciable diversity (Figure 10 and 11).

Figure 10 Enlarged upper right quadrant of the map from Figure 9
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Figure 11. Enlarged left lower quadrant of the map from Figure 9.

The final sparse DTM (grid 0,5x0,5km or 16�x16�) is a sum of four above 
operations with the center coordinates and rotation angle randomly changed 
from 0 to 50% of their initial values. The function (A) has been randomly
chosen from three options (4) for every step of calculation. 

Figure 12. The colored contour plot of basic sparse height�s matrix DTM. Maximal
height h=2345.95m.  

The layered effect will be seen on Figure 12 above. 
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Figure 13. The contour plot of the basic sparse matrix DTM from Figure12

Below are shown the meridian profiles of terrain height. 

Figure14. The meridian profiles of the terrain height of the map from Figure12

Before operation of building height�s matrix on the denser grid (1�x1� or
31.25mx31.25m) a local random change of height was introduced. The fol-
lowing algorithm has been used. A generator of random number is too pre-
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dictable, so another algorithm of randomization has been used.  The first five 
elements from two consecutive columns of  pz matrix were calculated as fol-
lows: 

   z(j+1,k)=exp(v(1,j));
   z(j+1,k)=z(j+1,k)-int(z(j+1,k)); 
   z(j+1,k+1)=exp(v(2,j));
   z(j+1,k+1)=z(j+1,k+1)-int(z(j+1,k+1)); 
where j=1:5 and v(2,5) is random matrix. 
Next all elements of the matrix pz(4000,4000) were calculated accordingly 

to the algorithm:
    z(j,k)=exp(z(j-5,k+1)); 
    z(j,k)=z(j,k)-int(z(j,k)); 
    z(j,k+1)=exp(z(j-5,k));
    z(j,k+1)=z(j,k+1)-int(z(j,k+1)); 
 j=6:4000 step 5 and k=1:4000 step 2.
All values of this matrix lies inside (0,1) interval. The new local height 

was calculated according to formula:
h h *[1 (0.5 pz) /100]  
so the height�s changes doesn�t exceed 1% of the initial value. 

6 The Dense Grid and the High Resolution DTM 

The base of the model of DTM is grid of points. As it was pointed out ear-
lier, the DTM doesn�t have to be completely real to main purpose. For this 
reason earth surface may be represented by planes(facets) defined for every 
three points of basic sparse grid. From a rectangular grid we must move to the 
triangle grid. 

Simple dividing of each rectangular by diagonal is ambiguous (see Fig-
ure 15).
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Figure 15. Two different triangle facets from rectangular grid.  .

To avoid this problem, we have divided every rectangle into four triangles 
by cross-point of its two diagonal (Figure 16).

Figure16. A rectangular dividing into the triangle.

We fix the height at the cross-point (center of rectangle)  as an arithmetic
average of heights at rectangle apexes. The terrain surface is built from isos-
celes rectangular triangles (see Figure 17) 
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Figure 17. Part of a triangle grid. Red points belongs to sparse basic grid. Dark and
bright triangles constitute area surface. 

From practical point of view, the most convenient rising of map density is
multiplication by 2n, then n controls density growth process. The matrix size 
increase 22n-time. For n=4 it means 256 time greater set to save and propor-
tional  calculating-time growth. It is wise to calculate only one time  the 
whole DTM, save it and use, when needed. 

Figure18. Local coordinate system at basic sparse grid; (d,d,h) �Cartesian coordi-
nates, (i,j)- numerical integer coordinates.

Choosing local coordinate system like on Figure18, we set four triangles 
with common apex and four vectors constituting that triangles: 

1 2 3 4n , n ,n and n
   

 with common initial point. A height z=h(x,y) is the third 
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coordinate of each apex point. The coordinates of any point r


 inside closed 
area of each triangle fulfill plane equation: 

0 i jij ij(r r ) N 0;      N n n    
     

                 (10) 

where i jn , n
 

- vectors constituting a triangle with point P(x,y,z), 

0r [0,0, h]


- common points of all triangles. After short calculations we 
obtain required result:  

x y
ij ijxN yN

z h(P) h ;
2d


  

                (11). 
where d=D/2, h is an arithmetic average height at center of rectangle and  
x,y are the coordinates on local grid: 

n
n 1 n 1

n

x k D / 2 ;
     k, l ( 2 ;2 );

y l D / 2 ;
     

       (12)
The integer coordinates of a points of the dense grid are: 

2
n

2

ix (i 1) 2 k;
     i 1; N ;  j 1, M ; k 1;2

iy ( j 1) 2 k;

          
      (13)

The Figure18 below shows colored contour plot of a small part of the 
dense high resolution DTM.  
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Figure19. High resolution 16-time enlarged signed fragment of the map from Fig-
ure12.

7 Summary

The model of digital terrain map was established. The destination of this 
model is testing some theoretical problems of earth potential  and geoid de-
termination. Starting from low resolution grid (0.5x0.5km or 16�x16�) the 
model containing all features of real terrain was build up mathematically. The
high resolution (1�x1�) grid for testing the theoretical models of geoid deter-
mination is needed. The earth surface may be represented acceptably by trian-
gular facets 250x500m and heights estimated at that planes. We have achieved 
high resolution of DTM (31x31m or 1�x1�), sufficient for numerical integra-
tion of terrain geophysical potential . The DTM features simulates natural real 
mass composition over earth geoid. The size of DTM is sufficient for numeri-
cal calculations of  potential integrals over big areas, noted by some authors 
[8,9,16,17]. The model of DTM is going to be useful for testing accuracy of 
the methods applied by some authors to geoid determination, especially to 
determine the ellipsoidal correction of terrain potential [3,4,5,6,7,10,14]. The 
functional dependence of an  ellipsoidal correction from geodetic coordinates 
may be established too. 
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