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Abstract

The paper concerns an application of regulation theory methods to modeling 
and effective control of connection-oriented data transmission networks. In 
particular the problem of congestion control in a single virtual circuit of such a
network is considered and new discrete-time sliding mode data flow rate
controllers are proposed. The controllers are designed in such a way that packet
losses are explicitly accounted for. The closed-loop system stability and finite-
time error convergence are proved. Moreover, a number of favorable properties
of the proposed controllers are stated as theorems, formally proved and verified
in a simulation example. It is demonstrated that the proposed controllers 
guarantee full utilization of the available bandwidth and eliminates the risk of
bottleneck node buffer overflow. Application of time-varying sliding 
hyperplanes helps avoid excessive transmission rates at the beginning of the
control process.

Key words: data transmission networks, congestion control, sliding-mode
control, discrete-time systems

1 Introduction

The problem of congestion control in data transmission networks has re-
cently become one of the most extensively studied research issues. Due to
bandwidth variations, packet losses, round trip time uncertainty and users’
constraints, the solution of the problem is not an easy task. On the other hand,
the control theoretic approach [14, 19] to the congestion elimination offers
many well developed tools and methods which can turn out to be very useful
in the design of flow management strategies. Therefore, in this paper we in-
troduce a discrete time model of a single virtual circuit in connection-oriented 
network and we apply sliding mode methodology [13–18, 20] to solve the
congestion problem in the circuit.
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The difficulty of the congestion control in modern data transmission net-
works is mainly caused by long propagation delays in the system. If conges-
tion occurs at a specific node, information about this condition must be con-
veyed to all the sources transmitting data through that node, which involves
feedback propagation delays. The congestion control in connection-oriented
networks has recently been studied in several papers [1–12]. The control algo-
rithms proposed in those papers employ a proportional plus derivative [10],
stochastic [7], adaptive [9] and Smith predictor based control strategies [1],
[2], [11], [12]. Recently a number of sliding mode congestion control algo-
rithms have also been proposed [3–6]. However, not many results on conges-
tion control in networks with lossy links are available. Therefore, this paper
presents a sliding mode flow controller for a single connection which looses
some packets during the transmission process. In other words, in this paper –
on the contrary to the previously published results – we consider not only data
losses caused by the bottleneck buffer link overflow, but also those which for 
other reasons happen on the transmission way from the source to the bottle-
neck link.

In the next section we introduce the state space model of the network, and
then in section 3 we use this model to design a feasible sliding mode conges-
tion control strategies.

2 Network Model

In this paper we consider a virtual circuit in a connection-oriented network
which consists of a single data source, intermediate nodes and a destination.
The block diagram of the circuit is shown in Figure 1. It is assumed that there 
is only one bottleneck node in the network. A controller which determines
data transmission rate of the source is placed at the bottleneck node. The out-
put signal of the controller (denoted by u) is sent back to the source, and
reaches it after backward delay TB. The source then sends the specified
amount of data, which is passed from node to node until it reaches the bottle-
neck queue after forward delay TF. We assume that somewhere along that line
a known, fixed percentage of data packets are lost so that only αu (where 
α ∈ (0,1)) data packets arrive at the bottleneck node. The round trip time RTT, 
i.e. the delay between generating a signal by the controller and the requested 
data arriving at the bottleneck queue, is a sum of the forward and backward
propagation delays

RTT = TB + TF (1)

Further in the paper, T represents the discretisation period, x(kT) is the bottle-
neck queue length at time instant kT, and xd > 0 is the demand value of x(kT).
It is assumed that before the start of data transmission, the buffer is empty, i.e.
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x(kT < 0) = 0. We also assume that the round trip time is a multiple of the
discretisation period, i.e. RTT = mRTTT, where mRTT is a positive integer.

Figure 1. The network model

The controller output at time kT is denoted as u(kT).The first data will 
reach the queue after RTT so for any time kT ≤ RTT the queue length

x(kT) = 0 (2)

The amount of data which may leave the bottleneck buffer is modeled as
an a priori unknown bounded function of time d(kT). The maximum value of
d(kT) is represented by dmax. The amount of data actually leaving the bottle-
neck node at time kT is denoted by h(kT). For any k ≥ 0

( ) ( )0 maxh kT d kT d≤ ≤ ≤ (3)

The queue length for kT > RTT may be expressed as

( ) ( ) ( ) ( ) ( )
11 1 1

0 0 0 0

RTTk mk k k

j j j j

x kT u jT RTT h jT u jT h jTα α
− −− − −

= = = =

= − − = −∑ ∑ ∑ ∑ (4)

and the network can be formulated in the state space in the following form

( ) ( ) ( ) ( )
( ) ( )

1
T

k T kT u kT h kT

y kT kT

+ = + +  
=

x Ax b o

q x
(5)

where x(kT) = [x1(kT) x2(kT) ... xn(kT)]T is the state vector, y(kT) = x1(kT) is the 
queue length, and xi(kT) = u[(k – n + i – 1)T] for any i = 2, ..., n. Furthermore, 
A is an n x n state matrix
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1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

α 
 
 

=  
 
 
  

Α



  



(6)

b, o and q denote n × 1 vectors

0 1 1

0 0 0

0 0 0

1 0 0

−     
     
     

= = =     
     
     
          

b o q   (7)

and n = mRTT + 1. The state space equation can also be rewritten as follows

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 2

2 3

1

1

1

1

1

n n

n

x k T x kT x kT h kT

x k T x kT

x k T x kT

x k T u kT

α

−

 + = 
  

  


+ −


+ =


 + =
  = +

 (8)

with the output signal y(kT) = x1(kT). The desired state of the system is de-
noted by xd = [xd1 xd2 ... xdn]

T. The first state variable xd1 is the demand queue
length, and further in the paper it is represented by xd. It can be noticed from
equations (8) that for h(kT) = 0 all other components of the demand state vec-
tor are equal to zero.

3 Congestion Control Strategies

In this section the flow control problem for the described network is consi-
dered. In chapter 3.1 a chattering-free discrete-time sliding mode controller is
designed that guarantees finite-time error convergence to zero. Important
properties of the proposed control strategy are then formulated and proved.
Since the strategy proposed in chapter 3.1 may lead to large values of control
signal in the starting phase of the control process, in chapter 3.2 a time-
varying sliding hyperplane is introduced that minimizes this effect. Then im-
portant properties of the modified control strategy are also formulated and 
proved.
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3.1 Time-Invariant Sliding Hyperplane

For the sliding mode controller design purpose we neglect the disturbance
h(kT) and introduce a sliding hyperplane described by the following equation

( ) ( ) 0Ts kT kT= =c e (9)

where vector cT = [c1 c2 ... cn] satisfies cTb ≠ 0. Error of the closed loop sys-
tem is denoted by e(kT) = xd – x(kT). Substituting (5) into cTe[(k + 1)T] = 0 we 
obtain the following control law

( ) ( ) ( )1T Tu kT kT
−

= −  dc b c x Ax (10)

When this control signal is used, the closed-loop system state matrix has the
form Ac = [1 – b(cTb)–1cT]A. The characteristic polynomial of this matrix

( ) 11 1 2

  
n nn n

n n

c c c c
det z z z z

c c

α−− − −
− = + +…+n cI A (11)

which gives the condition cn ≠ 0. A discrete-time system is asymptotically
stable if and only if all of its eigenvalues are located inside the unit circle.
Furthermore, to ensure finite-time error convergence to zero the characteristic
polynomial (11) has to satisfy

( ) ndet z z− =n cI A (12)

Comparing the coefficients of (11) and (12) we find the following form of
vector c

1 1 1  T
ncα

 =  c  (13)

Using (6), (7) and (13) we can rewrite (10) as follows

( ) ( ) ( )
2

1 n

d i
i

u kT x x kT x kT
α =

= − −   ∑ (14)

From (8) we notice that all the state variables except x1 are the delayed values
of the control signal, i.e. for i = 2, ..., n

( ) ( )1ix kT u k n i T= − + −   (15)

Substituting (15) into (14) we get
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( ) ( ) ( )
11

RTT

k

d
i k m

u kT x x kT u iT
α

−

= −

= − −   ∑ (16)

This completes the design of a flow control algorithm with a time-invariant 
sliding hyperplane.

Properties of the Proposed Strategy

In the previous section a time-invariant sliding hyperplane has been de-
signed to guarantee stability and finite-time error convergence of the closed-
loop system. The amount of data to be sent is given by (16). Consequently

( )0 dx
u

α
= (17)

Lemma 1: If the designed sliding mode controller is applied, then its output
for any k ≥ 0 satisfies

( ) ( )1
1u kT h k T

α
= −   (18)

Proof: Substituting (4) into (16) we obtain

( ) ( ) ( ) ( )

( ) ( )

1 1 1

0 0

1 1

0 0

1

1

RTT

RTT

k m k k

d
j j j k m

k k

d
j j

u kT x u jT h jT u jT

x h jT u jT

α
α

α

− − − −

= = = −

− −

= =

 
= − + − 

 
 

= + − 
 

∑ ∑ ∑

∑ ∑
(19)

By mathematical induction: first we check if (18) holds for k = 1

( ) ( ) ( ) ( ) ( )
0 0

0 0

1 1 1
0 0d

d d
j j

x
u T x h jT u jT x h h

α α α α= =

 
= + − = + − =    

 
∑ ∑ (20)

Now we assume that (18) holds for some k = m, where m is a positive integer, 
i.e.

( ) ( )1
1u mT h m T

α
= −   (21)

Then using this assumption we can find from (19) that for k = m + 1



Bartoszewicz A., Leśniewski P.

11

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0 0

0 1

1

0 0

1
1

1

1 1 1

m m

d
j j

m m
d

d
j j

m m

j j

u m T x h jT u jT

x
x h jT u jT

h jT h jT h mT

α

α α

α α α

= =

= =

−

= =

 
+ = + −    

 
 

= + − − 
 

= − =

∑ ∑

∑ ∑

∑ ∑

(22)

which means that if (18) holds for k = m, then it also holds for k = m + 1.
Finally, taking into account (21) and (22) we can conclude that (18) indeed

holds for any integer k ≥ 0. This ends the proof.
Lemma 1 clearly shows that the output of the proposed controller is always 

nonnegative and bounded, i.e. for any k ≥ 1

( ) 1
0 maxu kT d

α
≤ ≤ (23)

Theorem 1: If the proposed strategy is used, then the queue length will never
exceed its demand value, i.e. for any k ≥ 0

( ) dx kT x≤ (24)

Proof: From (2) for any k < (mRTT + 1) the queue length x(kT) = 0. Hence to
prove the theorem we only need to check if (24) holds for k ≥ mRTT + 1. Using
(18) we can rewrite (4) as

( ) ( )
1

1RTT

k

d d
j k m

x kT x h jT x
−

= − −

= − ≤∑ (25)

This ends the proof.
From the first equation in set (8) we notice that if x[(k +1)T] is greater than

zero, then the available bandwidth d(kT) is fully used. Theorem 2 gives the
necessary condition to guarantee that the queue length is strictly positive.

Theorem 2: If the proposed strategy is used, and the demand queue length
satisfies

( )1d RTT maxx m d> + (26)

then for any k > mRTT the queue length is always strictly positive.
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Proof: From (3) we see that for any k ≥ 0 the consumed bandwidth is always 
upper bounded h(kT) ≤ dmax. Using (25) for k > mRTT, we obtain

( ) ( ) ( )
1

1

1 0
RTT

k

d d RTT max
j k m

x kT x h jT x m d
−

= − −

= − ≥ − + >∑ (27)

This ends the proof.
Theorem 2 shows that for any k > mRTT the queue length is strictly greater

than zero, which implies that the available bandwidth is fully used for any
k ≥ mRTT.

3.2 Time-Varying Sliding Hyperplane

A disadvantage of the control strategy proposed in chapter 3.1 is a large
value of the control signal at the first time instant. Therefore, in this subsec-
tion we introduce a time-varying hyperplane that reduces this effect. The 
properties of this modified strategy are then formulated and proved.

We replace equation (9) describing the sliding hyperplane with the follow-
ing one

( ) ( ) ( ) 0Ts kT c e kT f kT= + = (28)

where f(kT) is an a priori known function of time chosen to satisfy s(0) = 0 
(the representative point at time instant k = 0 is positioned on the sliding
hyperplane). This gives the following condition

( ) ( )0 0Tf c e= − (29)

Because the previously proposed controller exhibits very good dynamic per-
formance after the starting phase of the regulation process, there should exist
such a k0 that f(kT) = 0 for any k > k0. Furthermore function f(kT) should be
strictly monotonic in the time interval [0, k0] .With the use of such a function
the sliding hyperplane moves monotonically towards the origin of the coordi-
nate frame, intersects it after k0, and remains fixed for any k > k0.

We chose f(kT) to be linear in the interval [0, k0]. Thus it can be written as
follows

( )
( )0

0
0

0

0 for

0 for  

Tk k
k k

kf kT

k k

− ≤= 
 >

c e
(30)

Now substituting e (kT) = xd – x(kT) into s[(k + 1)T] = 0 we obtain
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( ) ( ) ( ) ( ){ }1
1T Tu kT kT f k T

−
= − + +    dc b c x Ax (31)

where vector c is given by (13) in order to maintain the desirable properties of
the previous control strategy for k > k0.

Using (6), (7), (13) and (15) we rewrite (31) as follows

( ) ( ) ( ) ( )

( ) ( ) ( )

1
2

1

1

1 1
1

1 1
1

RTT

n

d i
i n

k

d
j k m n

u kT x x kT x kT f k T
c

x x kT u jT f k T
c

α

α

=

−

= −

= − − + +      

= − − + +      

∑

∑
(32)

This completes the design of a flow control algorithm with the proposed time-
varying sliding hyperplane.

Properties of the Proposed Strategy

In the previous subsection we modified the strategy proposed in chapter
3.1, introducing a time-varying hyperplane. The goal of this modification is to
reduce the control signal in the starting phase of the data transmission process.
In this section, we formulate and prove the properties of this altered algo-
rithm. Lemma 2 shows that the control signal is nonnegative and upper
bounded. Theorems 3 and 4 (analogous to Theorems 1 and 2) show that the
queue length will not exceed its demand value and that after some initial time
the queue length will always be strictly positive, which implies that the avail-
able bandwidth will be fully used.

Lemma 2: If the designed sliding mode controller is applied, then its output
for any k ≥ 0 satisfies

( ) ( ) ( ) ( ){ }1 1
1 1

n

u kT h k T f k T f kT
cα

= − + + −       (33)

Proof: Substituting (4) into (32)

( ) ( ) ( ) ( )
1 1

0 0

1 1
1

k k

d
j j n

u kT x h jT u jT f k T
cα

− −

= =

 
= + − + +    

 
∑ ∑ (34)

By mathematical induction, first we check if (33) holds for k = 0
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

0 0

1 1
0

1 1 1 1 1
0 0

d
j j n

d
n n n

u x h jT u jT f T
c

x f T f T f h T f T f
c c c

α

α α

− −

= =

 
= + − + 

 

= + = − = − + −      

∑ ∑
(35)

Then we assume that (33) holds for k = m

( ) ( ) ( ) ( ){ }1 1
1 1

n

u mT h m T f m T f mT
cα

= − + + −       (36)

Using this assumption from (32) we can find, that for k = m + 1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

( )

0 0

0

1

0 0

1

0

21
1

1 1
2 0

1 1
1 1

1 1 1
2

1 1 1
1

1

m m

d
j jn

m
d

j n

m

j n

m
d d

j n

m

j n n

f m T
u m T x h jT u jT

c

x
h jT f m T u

c

h j T f j T f jT
c

x x
h jT f m T

c k

h jT f m T f T
c c

h mT

α

α α

α

α α α

α

α

= =

=

=

=

−

=

+    + = + + −    
 

= + + + −  

 
 − − + + −      

= + + + −  

 
− − + −   

 

=

∑ ∑

∑

∑

∑

∑

( ) ( ){ }1
2 1

n

f m T f m T
c

+ + − +      

(37)

which means that if (32) holds for k = m, then it also holds for k = m + 1.
Taking into account (35) and (37), we conclude that equation (33) actually
holds for any k ≥ 0. This ends the proof.

It is easy to notice, that because max{[f((k + 1)T) – f(kT)]/cn} = xd/αk0 and 
h(kT) ≤ dmax for any k ≥ 0, then u(kT) ≤ (xd/αk0) + dmax for any k ≥ 0. Moreo-
ver, as min{[f((k + 1)T) – f(kT)]/cn} = 0 and h(kT) ≥ 0 for any k ≥ 0 then
u(kT) ≥ 0 for any k ≥ 0. This shows that the designed controller determines
data transmission rate which is always nonnegative and upper-bounded. Fur-
thermore, choosing f(kT) to be linear in the interval [0, k0] we obtained a con-
stant upper bound of the control signal, which is quite practical from applica-
tion point of view.
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Theorem 3: If the proposed controller is applied, then the queue length will
never exceed its demand value, i.e. for any k ≥ 0

( ) dx kT x≤ (38)

Proof: Transforming (32) we obtain

( ) ( ) ( ) ( )
11 1

1
RTT

k

d
j k m n

x x kT u kT u jT f k T
cα

−

= −

− = + − +      ∑ (39)

From the second Lemma u(kT) ≥ 0 for any k ≥ 0, and from (30)
f[(k + 1)T]/cn ≤ 0 also for any k ≥ 0. From this follows that the right hand side
of (39) is nonnegative, which gives xd – x(kT) ≥ 0. This ends the proof.

Theorem 4: If the proposed control strategy is applied and the demand queue
length satisfies inequality

( )1d RTT maxx m d> + (40)

then the queue length is strictly greater than zero for any k > k0 + mRTT.
Proof: Using Lemma 2 we can rewrite (4) as follows

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ){ } ( ) ( )

( ) ( ){ } ( )

1

0

1

1

2 1

0 0 0

1

10

0

1 1
1 1

1

1

RTT

RTT

RTT

k

j

k m

j n

k m k

RTT d
j jn

k

d RTT
j k mn

x kT h jT u

h j T f j T f jT
c

f k m T f T h jT h jT x
c k

x f k m T f T h jT
k c

α

α
α

α

α

−

=

− −

=

− − −

= =

−

= − −

= − +

 
 + − + + −      

= − − + − +  

= + − − −  

∑

∑

∑ ∑

∑

(41)

Then using (30), for any k > k0 + mRTT from (41) we obtain

( ) ( ) ( ){ } ( )

( ) ( )

1

10

1
0

10 0

1

1 1
1 0

RTT

RTT

k

d RTT
j k mn

k

d d d RTT max
j k m

x kT x f k m T f T h jT
k c

k
x x h jT x m d

k k

α −

= − −

−

= − −

= + − − −  

−
= − − ≥ − + >

∑

∑
(42)

This shows that the queue length is indeed strictly greater than zero for any
k > k0 + mRTT.
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4 Simulation Example

In order to verify the properties of both proposed strategies computer si-
mulations of the network are performed. The discretisation period T is se-
lected as 1 ms. The round trip time RTT is assumed to be 9 ms. Therefore
mRTT = 9 , and n = 10. The maximum available bandwidth of the bottleneck 
node is dmax = 80 kb. According to Theorems 2 and 4, the demand queue
length xd in both control algorithms should be greater than 800 kb. Therefore
xd has been chosen as 810 kb. In the presented simulation example, coefficient
α = 0.97, which means that 97% of the data sent by the source arrive at the
bottleneck node. For the time-varying hyperplane, parameter k0 was chosen
equal to 7.

Figure 2. Available bandwidth

The available bandwidth is shown in Figure 2. It changes rapidly between
small and large values, which reflects the most adverse possible conditions,
that could exist in the network. Figure 3 shows the output signal of controller
(16). It can be seen from this figure that the control signal is always strictly
positive and upper bounded. Then, Figure 4 shows the bottleneck link queue
length for the same control strategy. We can observe, that the queue length 
never exceeds its demand value, and is strictly positive for any k > mRTT. This
implies that the proposed strategy eliminates the risk of buffer overflow and
ensures full bandwidth utilization.
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Figure 3. Output signal of the controller with the time-invariant sliding hyperplane

Figure 4. Queue length with the application of the controller with the time-invariant
sliding hyperplane

Figures 5 and 6 show the respective simulation results for the network con-
trolled according to strategy (32). Comparing figures 3 and 5 we notice that
the introduction of a time-varying sliding hyperplane significantly reduces the
maximum value of the control signal in the starting phase of the control
process. Furthermore, as can be seen from figure 6, all the advantages of the
previous controller with the time-invariant sliding hyperplane are maintained.
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Figure 5. Output signal of the controller with the time-varying sliding hyperplane

Figure 6. Queue length with the application of the controller with the time-varying 
sliding hyperplane

5 Conclusions

In this paper two sliding mode control strategies for a single virtual con-
nection in a network with lossy links have been presented. The first strategy, 
which uses a time-invariant sliding hyperplane, has been designed to ensure
closed-loop system stability and finite time error convergence. Then it has 
been modified by introducing a time-varying sliding hyperplane in order to
reduce the maximum value of the control signal in the starting phase of data
transmission. Flow rates generated by both strategies are proved to be always 
non-negative and upper bounded. Moreover, both control algorithms eliminate
the risk of buffer overflow and for each of the algorithms conditions that
guarantee full bottleneck link bandwidth consumption have been derived.
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