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Abstract 
Effectively optimizing dilation and erosion is an extensively studied but not 
completely resolved problem. In this paper, a new optimization algorithm is 
proposed to improve the efficiency of dilation and erosion. Four notions are 
given to define the edges for any simply connected structuring element (SE). 
An assistant algorithm is proposed to detect these edges. Based on these 
notions, three iteration equations can be derived, which redefine dilation and 
erosion as iteration calculation. Time complexity of the new algorithm is 
reduced to O(n3). In addition, the new algorithm is suitable for online 
applications without the decomposition of SE. Simulation shows that with the 
same parameters, the performance of the new algorithm is better than that of 
Yang's algorithm. 
Keywords: dilation, erosion, optimization, iteration algorithm, time complexity 

analysis 

1  Introduction 

Dilation and erosion are the basis of open, close and other operations for 
Mathematical Morphology. They have been widely used for digital image 
processing, pattern recognition, and computer vision, etc. Because time com-
plexity of dilation and erosion is O(n4), in recent years, optimization algo-
rithms of them have been extensively studied [1, 2, 15, 16].  

According to the open literature, there are two kinds of methods for opti-
mization. The first kind of method based on chain rules is decomposition of 
a large structuring element (SE) into a set of smaller elements. A number of 
researchers have proposed many different optimization algorithms. Zhuang 
and Haralick [3] presented a tree-search algorithm for decomposition of an 
arbitrary SE into two-pixel elements. Xu [4] proposed an optimal algorithm 
for the decomposition of convex SE with a 3x3 region of support. Park and 
Chin [5] proposed an optimal algorithm for the decomposition of convex SEs 
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for 4-connected parallel array processors. Li and Ritter [6] developed 
the decomposition of separable and symmetric convex templates. Hashimoto, 
Barrera and Ferreira [7] developed a combinatorial optimization technique for 
the sequential decomposition. If the decomposition exists, the performance 
can be equivalent or better than [3, 4], and [5]. Several others [8, 9, 12, 13] 
proposed their own decomposition algorithms, but these algorithms were li-
mited to convex or other restrictive shapes. Park and Chin [11] proposed the 
decomposition of arbitrarily shaped SEs into 3x3 elements. However, it can-
not be suitable for all SEs. Generally speaking, not all SEs have sequential 
decomposition [4, 7, 11]. Moreover, the general morphological template de-
composition problem is NP-complete [10]. Therefore, decomposition is suita-
ble for off-line applications and small pictures. Especially when the picture is 
smaller than SE, decomposition is inevitable.  

The second method is non-decomposition of SE [14]. Compared with the 
first method, it is suitable for any simply connected SE and online applica-
tions.  

In this paper, a new optimization algorithm is proposed based on non-
decomposition. Through defining the edges of SE, a simply connected SE can 
be regarded as a set including edge pixels and inner pixels. Then, three itera-
tion equations are derived to redefine dilation and erosion as iteration calcula-
tion. By iteration, time complexity is reduced to O(n3). As the edges of SE are 
the foundation to form the iteration calculation, an assistant algorithm is pro-
posed to detect these edges.  

The rest of this paper is organized in such a manner that in Section 2, an 
assistant algorithm for the new optimization algorithm is proposed to detect 
the edges of any simply connected SE. In the next section, the new optimiza-
tion algorithm is introduced and discussed in detail. In Section 4, the experi-
ment and result are presented and the performance of the optimization algo-
rithm is analyzed minutely. Finally, in Section 5, some conclusions are drawn 
according to the result in Section 4. 

2 An assistant algorithm for detecting edges of SE 

2.1 Definition of related notions 

Let P and S be binary picture and SE respectively, and (x,y) denotes 
a pixel. Assume the top-left pixel of S is (0,0), then these following notions 
can be defined: 
Definition 1. Sup is the upper edge of S if and only if 

Sup={(x,y) | (x,y) ∈ S ∩ (x,y-1) ∉S}. 
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Definition 2. Slow is the lower edge of S if and only if 
Slow={(x,y) | (x,y) ∈ S ∩ (x,y+1) ∉S}. 

 
Definition 3. Sleft is the left edge of S if and only if 

Sleft={(x,y) | (x,y) ∈ S ∩ (x -1,y) ∉S }. 
 
Definition 4. Sright is the right edge of S if and only if 

Sright={(x,y) | (x,y) ∈ S ∩ (x +1,y) ∉S }. 
 

Definition 5. Sinner is the set of inner pixels of S. 
Sinner={(x,y)|(x,y) ∈ S ∩ ((x,y) ∉ (Sup ∪ Slow) ∪ (x,y) ∉ (Sleft ∪ Sright))}. 

 
Note that in above definitions, Def. 5 is defined by either Def. 1 and 

Def. 2, or Def. 3 and Def. 4. That is to say, Def. 5 is a dependent notion. Even 
for the same S, Sinner determined by Sup and Slow may be different with Sin-
ner determined by Sleft and Sright. 

Fig. 1 is an example of above definitions. Fig. 1(a) is an arbitrarily shaped 
S and the pixel labelled with ⨀ belongs to Sinner according to Fig. 1(b) and 
(c). However, it does not belong to Sinner according to Fig. 1(d) and (e). This 
example confirms that Def. 5 is a dependent notion determined by different 
kinds of edges. Moreover, in accordance with Fig. 1, some pixels may belong 
to both Sup and Slow, or both Sleft and Sright, at the same time. (See Fig. 1(d) 
and (e).) In the new optimization algorithm, these pixels must be included in 
both Sup and Slow, or both Sleft and Sright, for iteration. 

 

Figure 1. Edges and inner pixels of S: (a) A structuring element, S. (b) Sup of S. (c) 
Slow of S. (d) Sleft of S. (e) Sright of S. 
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2.2 An assistant algorithm and time complexity analysis 

After defining the above notions, the next problem is how to detect these 
edges for the new optimization algorithm. Since Sinner is a dependent notion, 
clearly, Sup and Slow, or Sleft and Sright, should be detected at the same time in 
the assistant algorithm. Take Sup and Slow, for instance, and the assistant 
algorithm for detecting these edges is summarized as follows: 
1. Choose one unprocessed column from S; 
2. Scan the current column and record all pixel pairs whose gray scales vary, 

such as (x,y-1) and (x,y); 
3. If the gray scale of (x,y) is 1, then (x,y) ∈ Sup; 
4. If the gray scale of (x,y-1) is 1, then (x,y-1) ∈Slow; 
5. If there are still unprocessed columns in S, then go to step 1); 
6. End. 

Note that time complexity of the assistant algorithm is mainly determined 
by step 1), 2) and 5), and the algorithm corresponds to a duplex loop. So the 
time complexity of the assistant algorithm is O(n2) at most. If S is scanned 
row by row, Sleft and Sright can be detected similarly. In applications, the assis-
tant algorithm should be called before calling the optimization algorithm so 
that the edges can be directly accessed in the optimization algorithm to im-
prove efficiency. 

3 A new optimization algorithm for dilation and erosion 

3.1 Standard algorithm of dilation and erosion and time complexity 
analysis 

In nature, dilation and erosion are spatial filtering and S corresponds to the 
filter. Suppose P is v × w and S is m×n. For (x,y), the output of filter, denoted 
by f (x,y), is shown as: 

𝑓(𝑥, 𝑦) =  � � 𝑆(𝑠, 𝑡)𝑃(𝑥 +  𝑠, 𝑦 +  𝑡)
𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 (1) 

 
where a=(m-1)/2, b=(n-1)/2, S(x,y) and P(x,y) are (x,y) in S and P, respective-
ly. If P(x,y) is updated by 

𝑃(𝑥, 𝑦) = � 0    𝑓(𝑥, 𝑦) = 0,
1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� (2) 
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then the calculation defined by equation (1) and (2) is dilation. If P(x,y) is 
updated by 

𝑃(𝑥, 𝑦) = �0    𝑓(𝑥, 𝑦) = ∥ 𝑆 ∥,
1          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� (3) 

where ∥ S ∥ is the number of 1 in S, then the calculation defined by equation 
(1) and (3) is erosion. 

In order to get a completely filtered P, for x =0,1,2,…,v-1 and 
y=0,1,2,…,w-1, calculations must be repeated according to equation (1), (2) 
and (3). This is known as the standard algorithm for dilation and erosion, and 
the time complexity of it is O(n4), where n=max(v, w, m, n). 

3.2 A new optimization algorithm and time complexity analysis 

Now a conclusion can be drawn that the time complexity of dilation and 
erosion is mainly caused by calculation in equation (1) because it must be 
repeated pixel by pixel for P and S. At the same time, it can also be found that 
in equation (1), there are many calculations that are unnecessary. For exam-
ple, consider the relationship between f(x,y) and f (x+1,y), which are the out-
puts of filter at time t and t+1. Assume Pleft(t) is the set of P(x,y), which over-
laps Sleft at time t. Similarly we can define Pright(t), Pup(t), and Plow(t). See Fig. 
2 and we can get  

f(x + 1, y) = f(x, y) + ||Pright(t + 1)|| -||Pleft(t)|| (4) 

On the contrary, if S horizontally moves from right to left, f (x,y) and f (x -1,y) 
are the outputs of filter at time t and t+1. Similarly we can get 

 
f(x - 1, y) = f(x, y) + ||Pleft(t + 1)||-||Pright(t)|| (5) 

 
Finally, if S vertically moves from top to bottom, f(x,y) and f(x,y+1) are 

the outputs of filter at time t and t+1. We can get  
 

f(x, y + 1) = f(x,y) + ||Plow(t + 1)|| - ||Pup(t)|| (6) 
 
Equation (4), (5), and (6) mean that if S continually moves above P pixel 

by pixel, it is not always necessary to calculate f(x,y) according to equa-
tion (1). Furthermore, if S moves along the route shown in Fig. 3, in equation 
(4), (5), and (6), there will always be only one equation suitable for calcula-
tion, except at f(0,0). But it doesn't matter because f(0,0) can be initialized 
according to equation (1). Obviously, the initialization of f(0,0) will not in-
crease time complexity of the optimization algorithm because only one pixel 
needs to do so. Thus, dilation and erosion are redefined as the iteration calcu-
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lation and the edges of S can be detected by the assistant algorithm introduced 
in Section 2. 

Finally, the description of the optimization algorithm can be summarized 
as follows: 
1. Initialize f(0,0) and other basic variables, such as calling the assistant algo-

rithm to detect edges of S; 
2. If processing P(x,y) is finished, then go to step 9); 
3. If S moves horizontally from left to right, then calculate f(x,y) according to 

equation (4); 
4. If S moves horizontally from right to left, then calculate f(x,y) according to 

equation (5); 
5. If S moves vertically from top to bottom, then calculate f(x,y) according to 

equation (6); 
6. Update P(x,y) according to f(x,y); 
7. Update necessary variables and prepare for the next iteration; 
8. Go to step 2); 
9. End. 

 

 

Figure 2. Variation of Pleft(t), Pleft(t+1), Pright(t), and Pright(t+1). Shadow area is P(x,y) 
covered by S at time t. Clearly, at time t, Pleft(t), Pleft(t+1), and Pright(t) are in shadow 

area; at time t+1, Pleft(t+1), Pright(t), and Pright(t+1) are in shadow area. In other words, 
during t and t+1, Pleft(t) moves out of shadow area and Pright(t+1) moves into shadow 

area. 

Note that step 2) means a duplex loop and steps 3), 4) and 5) include ac-
cessing the result of the assistant algorithm. So from step 2) to step 8), it is 
a triple loop and time complexity is O(n4) at most. 
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Figure 3. Moving route of S above P. 

4 Simulation and result 

4.1 Design of experiment 

During the experiment, P and S were both randomly initialized as binary 
matrixes. For the sake of simplicity of parameters, redefine P as w×w and S as 
m×m. In order to compare the performance of the optimization algorithm with 
that of the standard algorithm and Yang's algorithm [14], we recorded running 
time for the three algorithms with different parameters. Running time was 
measured by the clocks consumed in each experiment. Because in C pro-
gramming language, 1 second includes 1000 clocks, the accuracy of result is 1 
millisecond. At the same time, all experiments with the same parameters were 
repeated for 100 times and averages were recorded. 

4.2 Comparison and analysis of result 

The comparison of the result is shown in Fig. 4 and Fig. 5. Fig. 4 shows 
the relationship between running time and parameter w. Equation (1) implies 
that for the standard algorithm, the relationship between running time and w 
should be a quadratic function. Fig. 4(a) confirms this conclusion. Similarly, 
the conclusion is also true for Yang's algorithm and the new optimization 
algorithm in terms of Fig. 4(b) and (c). In addition, it can be seen in Fig.4 that 
for different parameter m, curves of the new optimization algorithm are more 
convergent than those of the standard algorithm and Yang's algorithm. It 
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means that for the new optimization algorithm, m has the least effect on run-
ning time. This is exactly what we want.  

In Fig. 5, the relationship between running time and m can be seen more 
clearly. Comparing Fig. 4(a) with Fig. 5(a), m has less effect on running time 
than w. However, time complexity is usually measured by asymptotic func-
tion of performance on the worst condition. So on the basis of Fig. 4(a) and 
Fig. 5(a), time complexity of the standard algorithm can be estimated as 
O(n4), tallying with the conclusion from equation (1). Note that in Fig. 5(c), 
performance curves are nearly horizontal lines. It suggests that m affects per-
formance almost linearly. Therefore, time complexity of the new optimization 
algorithm is estimated as O(n3) according to Fig. 4(c) and Fig. 5(c), being 
consistent with the analysis in Section 3.  

Finally, Fig. 6 shows the comparison of the performance between Yang's 
algorithm and the new optimization algorithm. It can be inferred that the per-
formance of the new algorithm is better. However, we also find that, the supe-
riority of the new algorithm can be stable only when w≥300. Otherwise, the 
superiority is unstable and sometimes the performance of the optimization 
algorithm is even worse than that of the standard algorithm. This conclusion is 
also true for Yang's algorithm. The reason for the instability is that if w is not 
large enough, the improved performance can-not match the additionally con-
sumed time caused by the more complex structure of the optimization algo-
rithm. In fact, according to the No Free Lunch (NFL) theorem, the conclusion 
will fit all optimization algorithms. 
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Figure 4. Comparison of performance effected by w: (a) Standard algorithm. 

(b) Yang's algorithm. (c) The new optimization algorithm. 
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Figure 5. Comparison of performance effected by m: (a) Standard algorithm. 

 (b) Yang's algorithm. (c) The new optimization algorithm. 
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Figure 6. Optimization rate of the new optimization algorithm compared with Yang's 
algorithm. Optimization rate is defined as the improved performance on the base of 

the performance of Yang's algorithm, with the same parameters. 

5 Conclusions 

Optimization for dilation and erosion has been an active research area for 
a long time. Earlier efforts mainly focused on the decomposition of SE. In this 
paper, a new optimization algorithm is presented without decomposition. By 
iteration, the time complexity is reduced to O(n3). Simulation confirms that 
the performance of the new algorithm is better than that of Yang's algorithm 
when w≥300. 
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