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Abstract 

In his paper I examine influence of small gravitational torque on rotation of 

elongated triaxial bodies. The Hamiltonian of a body moving in central 

gravitational field separates on two parts: orbital movement about central body 

and a rotation around the body mass center. For the small bodies like asteroids 

the separation spin-orbit constant has rate 10-12   of total energy and orbital and 

rotational motion are almost independent. This way we may consider orbital 

motion as a known function of time or true anomaly. Using the Hamiltonian I 

found gravitational torque affecting triaxial body in quadruple approximation. 

The Euler-Liouville equation is a system of non-linear differential equations. 

Position of the body is described by six variables: vector  in inertial reference 

system and three Euler angle: φ, ψ and  rigidly bounded to the principal axes 

of the body inertia tensor. The rotational motion is described by angular 

velocity (vector ) or angular momentum vector =  or  

denotes diagonal inertia tensor of 

the body) and three Euler angle. A numerical resolution of gravitationally 

disturbed Euler- Liouville equation is compared with the undisturbed one. This 

solution is well known as the Poinset solution of the free body rotation. 

Modelling of rotational motion is a great interest because its connections to 

astronomical measurements of asteroids physical properties. I found that 

direction of spin-vector of a rotating body in NPA state of motion changes 

markedly when forced by gravitational torque. 

Key words: gravitational torque, asteroids rotation, tumbling asteroids, 

numerical computation 

1 Introduction 

A rotational motion of asteroids is still interesting physical problem, be-

cause of its relationships with the development and evolution of the Solar 

System. There are two fundamental problems in dynamics of rotational mo-

tion. One, what is the source of observed rotational motion, it means, what 

kind of interaction are responsible for dynamics of asteroids rotation. Second, 
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do these interactions disturb observed rotational state of small celestial bodies 

sufficiently in realistic time scale (dozens years), to bring measurable 

changes. 

There are known following dynamical agents: tidal forces, random colli-

sions, YORP effect (related to infrared radiation of asteroid surface) and 

gravitational torque of the Sun and planets [2,3,7,17,18,21]. As main long-

term factors are regarded tidal forces and YORP effect. The first accounts for 

dissipative loss of kinetic energy, the second and third may change rotational 

state of a body [2,3,7,12,17,18,20,21]. They are beyond of interest in this pa-

per. 

The physical variables describing rotational motion are angular velocity , 

period of rotation Ta (if a motion is periodic), angular momentum , inertia 

tensor of a body and its kinetic energy T. An important measurable parameter 

is also an angular momentum of obliquity against orbital plane of the asteroid 

[3,13]. Today we know these parameters for about thousand asteroids [10,22]. 

The angular momentum direction (an asteroid pole) describes two angles: 

latitude  and longitude  (see fig.1). 

 

 

Figure 1. The asteroid pole coordinates 

These data are released to orbital or ecliptic plane. None asteroids with 

=0 exist; most of them have  nearly 90
o
. The distribution shape of longi-

tude is nearly uniform [10,13].  

In absence of external torque the angular momentum is constant of the mo-

tion: 
2 2 2 2 2 2 2

x x y y z z
L I I I const . 

Then possible kinetic energy is depending on angular velocity direction and 

for constant L it varies from 
2

m in z
T L / I  to 

2

m ax x
T L / I  
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       (
x y z x y z

 I diag (I , I , I ); I I I -inertia tensor of a body). 

Important parameter is so called dynamic inertia ID[3,11]: 
2

D

L
I

2T
        

x D z
I I I . 

If the rotation axis is x or z (principal axes), 
D x

I I  or 
D z

I I  and we 

say, that the body is in Long Axis Mode (LAM) or in Short Axis Mode 

(SAM) [3,11]. We distinguish SAM+ and SAM- if body rotation is prograde 

or retrograde versus orbital motion and respectively distinguish LAM+ and 

LAM-. 

ID is constant in the unperturbed motion. Note that in SAM motion the ki-

netic energy is minimal, so this is equilibrium state and in LAM motion the 

kinetic energy is maximal, so this is non-steady state. If  
D y

I I  equilibrium 

is unstable the rotational motion becomes chaotic. Intermediate ID means un-

stable motion known as tumbling.  These asteroids are called NPA (non-

principal axis) rotators [13]. Long term interactions (tidal forces) lead to SAM 

motion and we observe that the most known asteroids are in SAM state [6,10]. 

The angular velocity of asteroids shows obvious dependency on asteroids 

diameter. According to data from [6,13] medium period of rotational motion 

for most asteroids is near 
a

T 6hr , but for small asteroids ( D 1km ) it is 

about 5hr and for greater ( D 100km ) 
a

T 8 10hr . This means 

2.5 3rev / day . Since 1980 a dozens asteroids were discovered with signifi-

cantly greater periods of rotation range of 40 1200hr - very slow rotated 

asteroids [5]. The kinetic energy of these asteroids is considerably less and 

gravitational torque is strong enough to disturb free rotational motion in rea-

sonable time. There is possibility to measure deviation from undisturbed 

Euler-Liouville equation, especially for spin pole coordinates. A problem of 

gravitational torque interaction was discussed in some papers 

[10,12,15,16,20], generally for trajectories of spin pole on plane . Usual 

assumption SAM state and unforced rotational motion is made, so problem 

becomes two-dimensional in obliquity and in value of an angular momentum. 

In most papers discussion of rotational motion of asteroids is based on the 

well known Poinset solution of unperturbed Euler-Liouville equations [14]. In 

article [15] Ryabova do the same, but additionally calculate differences be-

tween perturbed and unperturbed solutions of Euler-Liouville equations. She 

concluded, that the difference is in range of the measurements errors, so it is 

no reason to perturbed calculation. It is true, but medium period of asteroid 

1620 Geographos rotation was estimated be 5.2hr and it is too small to obtain 

marked difference (very fast rotation).  
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2 Gravitationally disturbed rotational motion of asteroids. 

The main problems of this work is, if gravitational torque changes signifi-

cantly unperturbed solutions of Euler-Liouville equations and if this changes 

develops in reasonable time (no more than dozens years). In this work we 

study small gravitational torque and its effects on rotational motion of elon-

gated body of irregular shape. To write equations describing this motion, we 

have to define some reference systems. The first is the orbital inertial system 

XYZ with Z axis perpendicular to orbit plane and X axis parallel to aphelion 

line. The second system xyz is fixed to principal axis of inertia tensor 

x y z
Î diag(I , I , I )  of the body (BFCM shortly) with origin in the body mass 

centre; x is relative to the minimum inertia moment Ix, y to the intermediate 

moment Iy and z to the maximum moment Iz. The systems are related to other 

by Euler’s angle and rotation matrix from an inertial system to the body fixed 

system is Â ( , , ) :                               

   cos cos sin sin cos       sin cos cos sin cos       sin sin

Â ( , , )   cos sin sin cos cos       sin sin cos cos co s     cos sin

              sin sin                                    cos sin                               cos

(1) 

The Hamiltonian describing the motion of an asteroid has form: 

                          

22

oR

2

Lp 1 ˆH I U (R , , , )
2m 2mR 2

 
  (2) 

where 
R

p m R


  is asteroid orbital momentum, o

R
L R p
  

- orbital an-

gular momentum, T=
1

Î
2

 
- kinetic energy of rotational motion and 

U(R , , , ) - the potential energy of the body in a gravitational field. If we 

disregard solar oblateness and potential non-centricity, we may calculate 

U(R , , , ) as an integral: 

                                S

V

G M (r)dV
U (R , , , )

R r



     (3) 

where integrating is made over whole volume of an asteroid.  
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Figure 2. The body fixed reference frame: S – center of the mass. 

If we expand potential into Taylor series around vector 0R


 denoting center 

mass of the body, we may write the Hamiltonian as two parts in quadruple 

approximation:  

           

22

oR

0 1 2 3

Lp GM m 1 GMˆ ˆ ˆH H H I (TrI hIh )
2m 2mR R 2 R

   
 

. 
22

oR

0 2

1 3

Lp G M m
H ;

2m 2m R R

1 G Mˆ ˆ ˆH I (T rI hIh ).
2 R

   
                 (4) 

A vector h


 is a unit vector in 0R


 direction: 
0R

h
R




. A spin-orbit coupl-

ing constant z z

3 2

G M I IG M m
D :

R R m R
 for almost all known asteroids is 

less than

2

2

d

A.U .
, where d is a medium asteroid diameter and A.U. is astro-

nomical unit. If d is in range of a few km, then D<
14

10 . So the orbital mo-

tion is independent from rotational one and 0R


  is regarded as a known func-

tion of the time. We may introduce a true anomaly u instead the time. Then

2
A 1 e

R (u )
1 e cos u

; A is the great half-axis of the asteroid orbit and e is its 

eccentricity. External torque due to the second part of potential energy is cal-

culated in BFCM reference system equals [1,8]: 
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z y y z

x z x z3

y x x y

(I I )h h

3G M
M (u , , , ) (I I )h h

R (u )
(I I )h h


  (5) 

where vector h


 in the same reference system is: 

cos( u ) cos sin( u ) sin cos
R

h cos( u ) sin sin( u ) cos cos
R

sin( u ) sin




 (6) 

Introducing true anomaly instead time in Euler-Liouville equations we 

must change the time derivative by differentiation with respect to u variable. 

Due to conservation law the angular orbital momentum is constant and (B –

small half-axis): 

                               
2 0

a

L1 AB
R (u )u cons tan t

2 2 T
            (7) 

Hence we obtain: 

                         

2

a

32

2a 2

(1 e cos u )d d 2 AB d d
u

dt du R (u )T du du
(1 e )

 ;      (8) 

Here 
a

T  and 
a
 are a period of orbital motion and angular circular veloci-

ty of an asteroid. It follows from third Kepler’s law: 
2

a3 3

G (M m ) G M

A A
. 

We introduce dimensionless variables: angular velocity 

a

w




 and inertia 

tensor of the body: 

                                x x x

Z z z z

ˆ I I II
Ĵ diag ( , , ) diag (a , b,1)

I I I I
.  (9) 

Now we can re-write Euler-Liouville equations in the new variables: 
3

2 2
'

x y z y z32

2 2

(1 e ) (1 e cos u )
aw (1 b)[ w w 3 h h ];

(1 e cos u )
(1 e )

 

3

2 2
'

y x z x z32

2 2

(1 e ) (1 e cos u )
bw (1 a )[ w w 3 h h ];

(1 e cos u )
(1 e )

 (10) 
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3

2 2
'

z x y x y32

2 2

(1 e ) (1 e cos u )
w (b a )[ w w 3 h h ];

(1 e cos u )
(1 e )

     

Here apostrophe denotes a differentiation with respect to u variable (true 

anomaly). In the same variables, the Euler equation becomes a following 

form: 

                             

3

2 2
x y

2

3

2 2

z2

3

2 2

x y2

w sin w cos(1 e )
' ;

(1 e cos u ) sin

(1 e )
' w ' cos ;

(1 e cos u )

(1 e )
' (w cos w sin ).

(1 e cos u )

       (11) 

The two sets of above differential equations describe a rotational motion of 

a rigid body under gravitational torque. Because an angular velocity in   

unit is in range of 20 400 (for slowly rotating asteroid with rotation period 

T 60 1200hr [5], the second terms in equations (10) is significantly less than 

the first one. This mean, that gravitational torque is a very small disturbance 

of nearly free rotational motion of the asteroids. In this paper we examine, 

when this small action is noticeable and how long observation time is needed 

to discover its influence. The observed parameters of rotational motion of the 

asteroids are their rotational periods and angular momentum directions. In 

absence of gravitational torque kinetic energy of rotation and angular momen-

tum are a constant of the motion. For the triaxial body a part of energy conju-

gated to rotational motion is: 

3

1 3G Mˆ ˆ ˆE I (T rI hIh )
2 R

   
        (12) 

The second term is too small to perturb orbital motion, but may be signifi-

cantly large to change kinetic energy or angular momentum of rotational mo-

tion. In 
2

z a
I  units we may rewrite energy as dimensionless quantity:  

2 2 2 3 2 2 2

x y z x y z2

1 1 1 e cos u
E (aw bw w ) ( ) [1 a b 3(ah bh h )]

2 2 1 e
 (13) 

The potential energy is far smaller than kinetic one and thus the kinetic 

energy is nearly constant. The changes are periodic, because periodic is poten-

tial energy. It changes periodically, because periodic are both orbital and rota-

tional motion of asteroids. 
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In the inertial reference frame direction of the angular momentum is given 

by orbital longitude 
0
 and latitude 

0
 of the asteroid pole. For our investi-

gation it is not necessary to have knowledge about an asteroid pole in solar 

ecliptic or terrestrial equatorial reference frame, because we calculate only a 

difference between free and gravitationally disturbed rotational motion. It is 

the same in all references frames. If we resolve Euler-Liouville equation in 

BFCM frame, we get the angular momentum in an inertial orbital reference 

frame using reverse matrix Â .  The main experimental problem is, if the dif-

ference achieves measurable magnitude in reasonable time interval. Sparse 

authors have investigated this problem [3,15,19] and some of them have con-

cluded, that the difference is comparable to measurement error[15]. They have 

taken into account time of available observations from the last a few dozen 

years. All of them made simplified assumption the asteroids rotate about prin-

cipal axis of maximum moments of inertia. Dynamics of a free rotated body 

describes its kinetic energy T and angular momentum. If external torques 

doesn’t act, angular momentum vector and rotational kinetic energy are con-

stant regardless of initial conditions and body shape.  

3 The computational procedures.  

In this work only a regular periodical forces are taken into account, so for 

numerical solving Euler-Liouville equation we may use well known standard 

Adams or BDF algorithms with variable time step[9]. Every calculation was 

performed by “ode” procedure on Scilab platform. It is very fast and effective 

algorithm, sufficient for long time procedures. “Ode” procedure based on 

Adams and BDF algorithms is absolutely stable and convergent for any time 

step.  Some problems are fast and slow variables, because for one turn of true 

anomaly in some cases there is 200 and more turns some Euler angles. Most 

authors provides an averaging solar gravitational torque over fast variable  

due to rotation around principal body axis [1,6]. This simplifies problem, but 

seems sometimes not reasonable. Long period simulation exhibits properties 

not evident in short period resolutions, so we solve unchanged Euler-Liouville 

equations. The solution is 6-dimensional time dependent discrete vector
T

X [wx, wy, wz, , , ] . To avoid errors for long period, time step must 

be sufficiently small, so numerical resolution consist of several million of 

points and is multidimensional matrix. This resolution contains all informa-

tion about remain physical parameters, like kinetic energy and vector of angu-

lar momentum. The following procedure is used. The first step is solving nu-

merical dynamical equation of motion. Because the solution is dense in sense 

very large number of terms for every turn of asteroid about the Sun and graph-

ical procedures take to many times, far greater then solving the equation, we 
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make special procedure of rarefying. For graphical presentation enough take 

only a small percent of points from resolution and in this work we chose every 

N-th term from discrete vector X. N is any whole number. For clarity variable 

u (true anomaly) is back transformed to time by following formula [14]: 

                                     

u 2

2

0 0

p
t du

L (1 e cos u )
         (14) 

This function is analytically integrable and is periodical function of upper 

limit u. In explicit form: 

2a

2

T u 2 1 e u e sin u
t (u ) {2 int( ) 1 e [ arctg ( tg ) ]}

2 2 1 e 2 1 e cos u1 e

(15) 

By this formula results may be presented in convenient time dependant 

form. Next step procedure is computing kinetic energy and length of angular 

velocity and angular momentum as a discrete function of time. Last step needs 

conversion of vectors to inertial orbital reference frame to calculate angular 

coordinates of asteroid pole:  latitude 0 and longitude 0. Using Euler angles, 

we easy find rotation matrix 
1 Tˆ ˆA ( t ) A ( ( t ), ( t ), ( t ))  by formula (1) 

and transform vectors w


 and L


 to orbital reference frame: 

                                       
T T

II
ˆ ˆw A w ; L A L;

   
                (16) 

From new coordinates of vector IL


and according fig.1, we find: 

                           
Iy Iz

0 0
2 2

Ix Iy

L L
arctg ( ); arccos( )

LL L

     (17). 

The same formulas we use to vector Iw


. Some caution must be preserved 

because arctg function is ambiguous. 

4 The changes of rotational motion gravitational forced asteroid. 

The numerical results. 

The numerical computations were done systematically for every rotational 

mode (SAM, LAM, NPA) and chosen asteroid shapes (represented by dimen-

sionless tensor of inertia in diagonal form). The case of asteroids with axial 

symmetry we excluded, because there exist some analytical solution of Euler-

Liouville equation.  There are two main group (inside them numerous fami-

lies) of asteroids observed in the Solar System: main belt asteroids (MBA 

with semimajor axis A>2.0A.U.) and near Earth asteroids (NEA with semima-

jor axis A<2.0A.U. ). According Kepler’s law orbital periods of MBA astero-
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ids Ta>2.82years and  Ta<2.82years for NEA asteroids. For slow rotation for 

periods 40 800hr it means in dimensionless units: 

a a
11 T w 220 T        

where 
a

T (in years) is orbital period of asteroid, regardless of orbital se-

mimajor axis and family adherence. This is very wide range of possible angu-

lar dimensionless velocity, so we have done simulation for some chosen val-

ues near upper and lower limits.  Asteroids shape is represented by dimen-

sionless tensor of inertia. If we assume medium ellipsoidal shape of asteroids 

and its axes sizes Az<Ay<Ax, then: 

                   

2 2 2 2

y z x z

2 2 2 2

x y x y

A A A A
Ĵ diag(a , b,1) diag( , ,1)

A A A A
. 

Reverse solution for Az<Ay<Ax exist only, if a>1-b and a<b in the darkest 

area on plot (fig. 3), so it means, that only b>0.5 has physical meaning. 

 

 

Figure 3. Possible a and b value. 

From known for many asteroids data estimated by radar and telescope ob-

servation we may accept wide range of admissible a and b value [6,10,22]. So 

we made simulation for slight and strong elongated asteroids.  

The first computations were done for SAM state (rotation along shortest 

axe). How we expected, changes in rotational state are negligible, regardless 

of angular velocity, asteroid shape and initial conditions. The angular velocity 

and angular momentum and kinetic energy of a rotation are a bit greater then 

without interaction (fig. 4,5, computed for Ta=3.2yr and wz=300).  
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Figure 4. The small growth of total angular velocity and angular momentum gravita-

tionally perturbed body. 

 

 

Figure 5. Kinetic energy of the rotational motion. 

The rotation axe becomes precessing and nutating along initial rotation 

axe, but amplitude of these motions are very small (see figure 6). The same 

results confirm Scheeres D.J. et al. [6]. Due to the oscillating torque, all dif-
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ferences between free and perturbed motions are periodic and the period coin-

cides with the period of orbital motion.   

 

Figure 6. Precession of a z axe perturbed body near the SAM state (wx, wy – trans-

versal components of angular velocity). 

The directions of both angular velocity and angular momentum remain al-

most unchanged; a longitude amplitude is some greater (24’ vs. 0.1’) than 

latitude one (figure 7). 

     

 

Figure 6. Plot of angular velocity and angular momentum on (latitude and longi-

tude) plane.  -free body directions are constant. 

 

The situations change, if SAM assuming is only approximate.  Then all 

changes physical parameters remain periodic, but difference between angular 

velocities perturbed and free body rise in time (figure 7). This rising is period-

ical too, but time period is in range of hundreds years and out of interest of 

this work. 
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Figure 7. Calculation for Ta=2.4yr, a=0.56, b=0.9, w=[10;20,200]. 

Precession of a rotation axe is irregular, but still its amplitude in both polar 

coordinates is limited. A rotation axe of free body exhibits constant obliquity 

and small libration in longitude. The spin-vector of the free body passes by 

fixed point in contrast a spin-vector the disturbed one (figure 8). A position of 

both spin-vectors differs significantly. If an astronomical observations con-

firm ability of motion different then SAM state, theoretical model with gravi-

tational interaction seems to be more properly.  

 

 

Figure 8. Plot of direction angular velocity and angular momentum in polar coordi-

nates . 
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All plots of spin-vectors trajectories shows difference of initial and end po-

sition after ten orbital revolutions. For NEA asteroids it means about 10-20 

years. Some of them are observed since fifty and more years. 

The LAM motion is less probably, because this is instability state. For pure 

LAM motion angular velocity, angular momentum and kinetic energy per-

turbed body are less then these constant for free body, but still periodic as in 

SAM motion (figure 9).  

 

 

Figure 9. The kinetic energy T of disturbed (black area) and free body (dashed line). 

The difference of angular velocities and spin-vectors. LAM mode, Ta =2.4yr, 

wx=200,  a=0.75, b=0.9. 

The angular velocity disturbed body precesse irregular about x axe (fig. 

10), while undisturbed one precesse regularly with constant obliquity.  

 

Figure 10. Irregular precession of angular velocity about x axes. LAM mode. 
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Trajectories of spin-vectors and angular velocities are shown on Figure 11. 

The obliquities are limited, but longitudes turn perigon many times by each 

orbital revolution. So by LAM assumption model of rotational motion is very 

difficult to analysis. All authors make assumption of SAM state of rotational 

motion, even though experimental data suggest irregular motion NPA type 

[5,6,10,13,15,16]. This simplifies analysis, but for last discovered NPA rota-

tors may be useless. 

 

 

Figure 11. Plot of angular velocity and spin-vector trajectories in polar coordinates. 

LAM motion like on fig. 9. 

NPA rotators called tumblers have in the majority long rotational periods. 

For analysis experimental data usually is used model of free rotational motion 

well known as Poinset solution, in absence of external gravitational torque 

[14]. Rotational motion consists from two motions: rotation bodies about z 

axis with period T and rotation this axis about spin-vector L


with period T , 

where  and - Euler angles. In this work computer simulation rotational 
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motion forced by external gravitational torque were made for really existing 

NPA rotator. For example was chosen planetoid 253Mathilda. The parameters 

of motion and shape according to paper [6] is: Ta=4.3yr, e=0.265, wtot=90 

(calculated from listed rotation period T=417.7hr), a=0.664, b=0.972. Author 

warns that the uncertainty of period estimation may be wrong by a factor of 2. 

This means, that T 200 800hr. 

Assuming SAM state of rotation, we confirm earlier results: small growth 

angular momentum and velocity and small, regular precession of angular ve-

locity about z axis. But a direction of angular velocity and angular momentum 

becomes strong unstable and almost chaotic character (figure 12). These com-

ponents have fundamental meaning in establishing period of asteroid rotation 

from experimental data.  

 

 

Figure 12. Time variation of angular coordinates angular momentum and angular 

velocity simulated for 253Mathilda. 

 

Latitude both physical parameters vary from about zero to three radians, 

longitude turn perigon many times during one orbital period. Trajectories both 

angular variables in angular coordinates seem chaotic (figure 13,14), but as-

sumption of a SAM state motion, if it is false leads to bad estimation of rota-

tional period. 
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Figure 13. Trajectories plot of angular velocity and angular momentum 253 Mathilda. 

 

Figure 14. Trajectories plot of angular velocity and angular momentum 253 Mathilda 

– closer SAM state. 
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The trajectories presented on fig.14 are computed for rotational motion dif-

fers from pure SAM mode only about a few degrees and it may be prevalent 

in Solar System. The small deviation from rotation about principal axis leads 

to dramatic changes. 

5 Summary. 

Presented results shows, that only for rotation about principal short axis 

Poinset solution of Euler-Liouville equation is reasonable model of rotated 

asteroids.  Photometric lightcurves of asteroids provide information about 

rotational periods, orientation of axes and shape. If photometric lightcurve 

exhibit multiperiodical character, longtime deduction needs use some more 

physical parameters, like gravitational interaction. The gravitational torque is 

very small compared to kinetical energy, but for tumbling asteroids it is suffi-

ciently to change markedly trajectory of spin-vector in a few year. Its influ-

ence is negligible only in pure SAM mode of rotational motion. A direction of 

angular momentum and angular velocity of asteroids are two important para-

meters deduced indirectly from astronomical observations. Solution of slow 

rotated asteroids forced by gravitational torque varies sufficiently fast to 

change theoretical presumption for time observation range of a few dozen and 

less years. It seems likely, that good adjusted dynamical Euler-Liouville equa-

tion gives better agreement of lightcurves and rotational periods observed for 

many years asteroids. Uncertainty presented in  work [6] parameters confirm 

the necessity of building more sophisticated models of asteroids rotation, in-

volving all known interaction, like gravitational torque and YORP effect. 

Gravitational torque really doesn’t change marked periods of rotation, kineti-

cal energy or total angular velocity and angular momentum. But its influence 

for spatial directory of rotational axe and spin-vector direction is significant, 

so it must be taken into account in future work on this field. Also small 

change of rotational period the gravitationally forced asteroid must be taken 

into account in long evolution time prediction.  
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