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Abstract 

The Braess paradox in road planning presents a case, where adding a new 

connection in a road network may lead to delayed arrival because of violation 

of the balance in the traffic flow. The paper discusses a generalization of this 

paradox. The initial, the asymmetrical, and the Pareto optimal domain are 

identified. Administrative solution with the participation of a controller is 

introduced, which aims to minimize the time of arrival, and thus has an 

environmental aspect. The preferences of the groups of passengers in the 

vehicles are modeled by an analytical arctan-approximated utility. Nash 

arbitration is employed to find an optimal solution that maximizes the Nash 

utility criterion. It is performed over the optimal Pareto domain that is outlined 

in four stages. A numerical example with 40 vehicles and five types of 

preferences of the passengers demonstrates the ideas. 

 

Keywords: Nash arbitration, bargaining set, absolute Pareto domain, arctan-

approximated utilities, disagreement point controversy, 

environmentally-friendly solutions 
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1 Introduction 

The literature on urban planning offers example of cases, in which adding 

a new connection in a road network disturbs the balanced of streams and leads 

to higher time loss in travelling. In the same fashion, eliminating a road net-

work connection could facilitate the traffic [Kolata, 1990; Knödel, 1969]. In 

1968, Braess formulated these observations into the so called Braess Paradox 

[Braess, 2005], whose generalization is the scope of this work.  

Figure 1a shows a one-way road network, leading from Start to Finish. A 

flow of N vehicles (N is an even number, and it is at least 4), the i-th of which 

contains mi passengers, is driving from Start to Finish. Assume that x cars 

have chosen the route Start-A. The time needed to go on the route Start-A and 

on B-Finish is the number of vehicles traveling on the respective route, mul-

tiplied by 40/N. The time to go on routes Start-B and A-Finish is always 45 

minutes regardless of the traffic load. Since both routes are symmetrical in 

terms of time, then x is approximately N/2. Then each route takes 

(40N/2)/N+45=20+45=65 minutes.  Let’s follow the scheme on fig. 1b and 

construct a new one-way connection between points A and B, where the time 

to travel is very short and tends to zero. Assume that y vehicles have chosen 

the route A-Finish. Even if all vehicles have selected the route Start-A-B-

Finish, the time to travel on the sections Start-A and B-Finish would be 

(40N)/N=40 minutes, whereas the alternative sections Start-B and A-Finish 

would take 45 minutes to travel. For that reason, in the newly established 

situation, each rational driver would select the route Start-A-B-Finish. As a 

result, the time to travel for each vehicle would be 40+0+40=80 minutes, 

which is more than the on-average 65-minute trip in case the new route A-B 

did not exist.  

Assume that the police are regulating points Start and А and in fact choos-

es the pair (x; y) by directing the drivers to the respective routes. The objec-

tive is to find such a pair (xopt; yopt) that corresponds to a given type of ratio-

nality. This is a typical group decision, because for example the pair (N/2; 

N/2) is to be preferred over the individually “rational” pair (N; 0) that causes a 

15-minute delay to all. The police have to compromise on the individual 

choices of the drivers. Initial results on solving this task have been proposed 

in [Nikolova, et al., 2012]. 
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a 

b 
Figure 1. Time and number of vehicles on the route network with (A) and without 

(B) the additional connection AB  

2 Domains for the Braess Paradox 

There are three ways to go from Start to Finish: I) Start-B-Finish; II) Start-

A-Finish; III) Start-A-B-Finish. For a fixed pair (x; y) the vehicles may be 

divided into three groups, containing respectively nI, nII and nIII vehicles, which 

arrive respectively in TI, TII, and TIII minutes:  

 

85 40 /
I

T y N ; In N x   (1) 

 

40 45IIT x / N ; 
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Each vehicle would randomly be assigned by the police to either of the 

groups I, II or III, and would have probability respectively nI/N, nII/N and 

nIII/N to travel respectively TI, TII or TIII minutes. Therefore, a discrete random 

variable T(x; y) corresponds to the fixed pair (x; y). Regardless of whether this 

is a group decision of all the passengers or an individual decision of the po-

lice, the task is to rank the discrete random variables according to preference 

in a given domain R EN of pairs (x; y). Since x is N at most, and y does not 

exceed x, the decision belongs to the triangle FC D  from fig. 2 defined by 

the conditions:  

 

0 1 2

0 1 2

x , , ,...,N

y , , ,..., x
   

 (4) 

The formula (4) can be called initial domain. Let the point (N/2; N/2) be 

denoted as Е. Let the point R (xR; yR) be an arbitrary point from EDF , 

where R EN . Let’s define S (xs; ys)=(N–yR; N–xR,). It is easy to prove that 

the line segment RS is perpendicular to the line segment RN. The midpoint of 

the line segment RS is in М(xM; yM)=((N–yR+xR)/2; N–xM) and belongs to the 

line segment ED. It follows that point S is symmetrical to point R according to 

the line segment ED.  

If the times and the number of people in each group for the point S(xs; ys) 

are calculated and compared to those in point R(xR; yR), it would turn out that 

1
S R

IIT T , S R
I IIn n  ,

 

S R
II IT T ,

 
S R
II In n ,

 

S R
III IIIT T  , and S R

III IIIn n . The result 

is that points R and S are symmetrical according to time, i.e. similar results are 

acquired, and only groups I and II switch places. Following this conclusion, it 

is possible to limit the domain of analyzed points (x; y) in C D E , where: 

 

 
1

0 1 2 2

x y , y ,...,N y

y , , ,...,N /
     (5) 

 

The formula (5) represents the so-called asymmetrical domain.  
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Figure 2. Domains of (x; y) in the Braess paradox 

 

The domain (5) may be additionally tightened to an absolute Pareto do-

main. The only assumption to the preferences of the passengers is that all wish 

to travel as fast as possible. Let’s assume that at some distribution of the ve-

hicles (x; y) some of those reduce their time, but no one extends its travel in 

comparison with another distribution of the vehicles (x*; y*). As long as each 

distribution of the vehicles corresponds to a discrete random variable “time 

for arrival of an arbitrary vehicle (in minutes)”, it is evident that the cumula-

tive distribution function (CDF) corresponding to (x; y) would lie to the left of 

the CDF* corresponding to (x*; y*), as it is shown on fig. 3. The last distribu-

tion is called dominated, and its corresponding point (x*; y*) does not belong 

to the absolute Pareto domain, because the optimal decision (xopt; yopt) would 

always be different from (x*; y*) under any individual utility functions, as 

long as they are decreasing on time. As a result the absolute Pareto domain 

contains only the points from (5), which are not dominated. The adjective 

“absolute” is assigned because the domain does not depend on the particular 

form of the utility functions as long as they are decreasing functions of time.  

 

 
Figure 3. CDF of the dominating point (dashed line) and CDF* of the dominated 

point (solid line) 
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For example, the point (N/2; N/2) is dominating when compared with the 

point (0; 0), and the resulting CDFs are shown on fig. 4.  
 

 
Figure 4. CDF of the dominant point (N/2; N/2) (dashed line) and of the dominated 

point (0; 0) (solid line) 

 

The Appendix to the paper proves consecutively the following domin-

ances:  
 (N/2; N/2)  (0; 0) 

 (N/2; N/2)  (N; 0) 

 (N/2; N/2)  (N–1; 0) 

 (N–1; 1) (N–2; 0) 

 (x*+1; 1) (x*; 0) for x*={1, 2, …, N – 3} 

 (2x*; x*) (x*; x*) for x*={1, 2, …, 3 1N } 

 (2N/3; 2N/3)  (N/3; N/3) if 6 divides N 

 (N/2; N/2)  (x*; N–x*) for  x*={ 13 16N , 13 16N +1, …, N–1} 

 (N/2;N/2)  (x*;y*) for y*={1,2,…, 3 16 1 2N / }, and x*={y*+

5 8N , y*+ 5 8N +1,…, N–y*–1} 

where   stands for the binary relation “more preferred than”. The notation 

a stands for the greatest integer that is less or equal to а, whereas a  

stands for the smallest integer that is greater or equal to а, where а is a real 

number.  

The work [Tenekedjieva, 2012a] proved that the non-dominated set (abso-

lute Pareto domain) of the generalized Braess paradox with even number of 

vehicles N  4 is:  
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(6) 

 

The absolute Pareto domain for N=40 is shown in dots on fig. 5.  

 

 
Figure 5. Absolute Pareto domain for N=40 vehicles depicted with dots, whereas the 

dominated points are given with crosses, and the disagreement point is circled 

3 Administrative Solutions of the Braess Paradox 

The choice of the pair (xopt; yopt) in the Braess paradox can be done admini-

stratively by the controller – in this case the police – without taking into ac-

count the individual preferences of the passengers in the vehicles. An obvious 

solution is to choose such an allocation of vehicles so that the total travelling 

time is minimized [Tenekedjieva, 2012b]. In other words, (xopt; yopt) 

=arg{min(K1(x; y))}, where 
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The optimization is carried out in the absolute Pareto domain (6). This so-

lution has an environmental aspect, since all other being equal, the longer the 

vehicles are running the higher the emissions are. The task has many other 

solutions.  

Let’s have a function v , which is the average fuel consumption of the 

vehicles per unit time at a given speed v. Then (xopt; yopt) = arg{min(K2(x; y))}, 

where K2 is the total fuel consumption of the vehicles from Start to Finish. 

 

K2(x, y) = 
40

45

45 40

SB N y . BF .N
N x . . .

N N y .

+   

40
45

40 45

.x SA.N AF
y . . .

N x
    (8)

 

40 40

40 40

.x SA.N N y . BF .N
x y . . .

N x N N y .
   

 

Here, SB, BF, SA, AF are respectively the length of the section Start-B, B-

Finish, Start-A, A-Finish. Since we are not sure about the length of the routes, 

in this case the optimization is performed in the domain (4).  

Let v
 
be the average quantity of emissions per unit time at a given 

speed. Then if v  is replaced by v  in (8), the resulting criterion K3 (x; 

y) would be the total emissions for the whole vehicle flow. Similarly, the op-

timization is performed in the domain (4).  

4 Arbitrage Decisions of the Braess Paradox 

The controlling party (the police) may (and perhaps should) search for 

such a decision (xopt; yopt) that best corresponds to the preferences of the con-

trolled individuals. The process of finding such a decision shall be called arbi-

tration.  

4.1. Describing preferences by utilities 

The preferences of individuals over uncertain alternatives are described by 

utility functions [von Neumann, Morgenstern, 1947]. The work [Nikolova, 

2007] justified the possibilities and advantages of using arctan-approximated 

one-dimensional decreasing utility functions over time t in the interval [Tmin; 

Tmax], which are present in the Braess case:  
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0 0

0 0

arctg[ ( )] arctg[ ( )]
( )

arctg[ ( )] arctg[ ( )]

max

max min

a T  t a  t t
u t

a T t a T t
  (9) 

 

The resulting local risk aversion function shows that the arctan-

approximated utility models the typical risk attitudes of people.  

4.2. Decisions with equal utility functions 

Let ui(T) be a utility function, defined over the time to travel T of the pas-

sengers in the i-th vehicle. It is assumed that ui(T) is a decreasing function for 

each i. Then, according to the passengers in the i-th vehicle (xopt; 

yopt)=arg{max(Ei(u|x, y))}, where Ei(u|x, y) is the expected utility of the i-th 

vehicle under distribution of the vehicles (x; y).  

 

| , .  .  . 
I II III

i i I i II i III

n n n
E u x y u T u T u T

N N N
   (10) 

 

Such a decision would apply in case the controlling party assumed that all 

passengers in all vehicles have equal utilities, coinciding with that of the i-th 

one, or when ui(.) is the utility function of the controlling party, or when ui(.) 

is interpreted as the average function for all passengers. The optimization is 

performed in the absolute Pareto domain (6). The pair that optimizes (10) 

could be called (xopt,i; yopt,i), because this is the desired solution by the passen-

gers in the i-th vehicle.  

4.3. Nash arbitration under different utility functions 

The assumptions made in the end of section 4.2 do not correspond to reali-

ty. Therefore a decision is needed that finds the best point (xopt; yopt) from the 

point of view of the time for arrival, taking into account the different prefe-

rences of the passengers in the vehicles. Such a decision has been proposed by 

Nash, who introduced procedures for fair and rapid arbitration solution be-

tween players (conflicting parties) that need to allocate a given resource [Os-

borne, Rubenstein, 1994; Nash, 1950].  

Assume there are M players with different utility functions. The players al-

locate a resource, which in this case is the time for arrival and is defined by 

the pair (x; y). In this case, 
1

N

i

i

M m  is the total number of passengers. For 

the sake of simplicity a reasonable assumption is adopted that the passengers 

in the i-th vehicle have common utility function ui(.). In fact they can be 

viewed as a super-player with relative negotiation power mi/M. Each super-

player would like to have such an allocation of the resource that corresponds 
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to her value system and risk attitude. When the preferences of all super-

players are taken into consideration, for any arbitrary decision (x; y), which 

belongs to the asymmetric domain (5), the expected utilities (10) of the super-

players would form a point in the N-dimensional space of expected utilities:  
 

(E1(u|x, y), E2(u|x, y), …, EN(u| x, y) )  (11) 
 

Let all the feasible points (11) form an N-dimensional region called super-

feasibility region Gs. In fact, the information in (11) can be organized in an M-

dimensional space, where the i-th coordinate is copied mi times, and each new 

coordinate represents the expected utility of a passenger. The resulting space 

is called a feasibility region G. As long as Gs and G contain equal informa-

tion, and provided that mi (i=1, 2, …, N) are known, it is possible to use (11) 

because it is of lower dimension (N<M). There is one-to-one mapping be-

tween the points in the two-dimensional asymmetric domain, the N-

dimensional super-feasibility region Gs and the M-dimensional feasibility 

region G. It is assumed that in the case of disagreement, the distribution of the 

resource is known and is called disagreement point. In this case, this point is 

(xno; yno)=(N; 0) (which means that all vehicles go on the route Start-A-B-

Finish), which has the following form in the N-dimensional space of expected 

utilities:  
 

(E1(u|xno, yno), E2(u | xno, yno), …, EN(u | xno, yno))  (12) 
 

Nash formulated four assumptions for rational allocation of the resource 

between the players as a result of arbitrating. In this case the solution called 

agreement point (xopt, yopt) in the asymmetric domain is represented in Gs as:  
 

(E1(u|xopt, yopt), E2(u | xopt, yopt), …, EN(u | xopt, yopt))  (13) 
 

The first Nash assumption is that (13) belongs to the so-called bargaining 

set BS, which is part of the Pareto efficient set PES. The PES is the part of Gs 

that remains once all dominated points are extracted. In other words, the dom-

inated point corresponds to an expected utility value that is not higher than the 

one in the dominated point for each player, whereas for at least one player the 

dominant point has a higher expected utility compared to that in the dominat-

ed one. That is why in the case of two players, PES is defined as the north-

eastern border of Gs. In this case, PES would be part of the absolute Pareto 

domain (6). Furthermore, Nash assumed that the points in BS would have 

coordinates that are not less than the corresponding coordinates of (12) (for 

each super-player). The expectation is that in order to find the agreement 

point, the arbiter would focus on this part of possible actions on G that domi-

nates the disagreement point. Finally, the first Nash assumption is that the 
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agreement point belongs to BS, which is the part of PES that dominates (12). It 

is needless to say that BS can be transformed into G and into the asymmetric 

domain. This assumption is called Pareto optimality.  

The second Nash assumption is that if G (but not Gs) is a symmetric M-

dimensional area on all its arguments and the disagreement point (12) is with 

M equal arguments in G, then the agreement point (13) would also be with M 

equal arguments. This is obvious since if the players have equal value systems 

and equal negotiation powers, then the established compromise would be 

symmetrical. This assumption is called symmetricity.  

The third Nash assumption is that if the utility functions of players are sub-

jected to positive affine transformations, then the distribution of resources that 

corresponds to the agreement point, would not change. This is in fact a uni-

queness theorem for the utility function [French, 1993], which in this particu-

lar case means that for an arbitrary real ci>0 and bi, the function 

wi(t)=ciui(t)+bi equivalently describes the value system and risk attitude of the 

passengers in the i-th vehicle. This assumption is called invariance to affine 

transformations.  

The fourth Nash assumption is that if the arbitrating was conducted in G’, 

which is part of G, and G’ contained the disagreement point and the agree-

ment point when arbitrating in G, then the agreement points in G and G’ 

would the equal. This assumption allows widening the area of feasibility re-

gion until it became symmetrical on all its arguments. This assumption is 

called independence of irrelevant alternatives.  

On the basis of these assumptions, Nash proved that the agreement point 

should maximize the Nash utility criterion, which is the product of the M dif-

ferences between expected utilities of the players in a given point and the 

expected utilities of the players in the disagreement point. In this case, the 

optimal distribution of the vehicles would be (xopt; yopt) = arg{max(dEu(x, 

y))}, where the Nash utility criterion is:  

 

    

1

    

1

,   | ,

  80| ,

i

i

m

i i no

i

N
m

i i

i

N

dEu x y E u x y u T

E u x y u

  (14) 

 

The optimization of (14) should be performed in the bargaining set. How-

ever, finding it is a task much more complicated that the optimization itself. 

Therefore, following the second Nash assumption, the optimization of (14) 

can be conducted in the part of the absolute Pareto domain (6), where

i   i    noE u | x , y u T , for i=1, 2, …, N. The dependence in (14) exploits the 

fact that 
    

| ,
i no no i no

E u x y u T , since in the disagreement point, the time of 
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arrival is not a random variable, but a constant. The assumptions in (14) are 

that the passengers in a given vehicle have equal utilities, and the four Nash 

assumptions hold.  

5 An Illustrative Example 

Let the number of vehicles be N=40. The number of passengers in each 

vehicle is given in column 4 of table 1. The minimal time Tmin=41 min for an 

arbitrary vehicle is reached in the pair (x; y) = (1; 0), where 39 vehicles would 

travel for 85 min in group 1 on the route Start-B-Finish and one vehicle would 

travel 41 min in group 3 on the route Start-A-B-Finish. The maximal time 

Tmax=85 min for an arbitrary vehicle is reached in the pair (x; y) = (0; 0), 

where 40 vehicles would travel for 85 min in group 1 on the route Start-B-

Finish. The disagreement point (in the case of refusal of the police to direct 

the vehicle flow) is (xno; yno)=(40; 0), where 40 vehicles would travel for 80 

min in group 3 on the route Start-A-B-Finish.  

The utility function of the passengers in each vehicle is arctan-

approximated in the interval [41; 85], with parameters a and t0, given in col-

umn 2 and 3 of table 1. The utility functions of the passengers in vehicles 

from 1 to 10 are risk prone (fig. 6). Those people prefer an uncertain arrival in 

time that equals to the random variable T(x, y) – “time of arrival at given x 

and y” to a certain arrival for the expected value of T(x, y): E(T|x, y)=(nI.TI + 

nII.TII + nIII.TIII)/N. The utility functions of the passenger groups in vehicles 

from 11 to 20 are risk averse (fig. 7). They prefer a certain arrival for the ex-

pected value of T (x, y) to an uncertain arrival with time that equals to the 

random variable T(x, y). The utility functions of the passenger groups in ve-

hicles from 21 to 30 have an inflex point (z0)i in the interval [Tmin; Tmax], thus 

they are risk prone in the interval [Tmin; (t0)i] and risk averse in the interval 

[(t0)i; Tmax] (fig. 8). The utility functions of the passenger groups in vehicles 

from 31 to 35 show they are only interested whether they would arrive before 

(z0)i or after (fig. 9). Such a behavior might be explained by the lack of delay 

tolerance due to other arrangements (a flight, a business meeting, etc.). The 

utility functions of the passenger groups in vehicles from 36 to 40 are linear 

(fig. 10). They are risk neutral and they are indifferent on the time of arrival. 
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Figure. 6. Arctan-approximated utility functions of the passengers  

in vehicles from 1 to 10 

 

 
Figure 7. Arctan-approximated utility functions of the passengers  

in vehicles from 11 to 20 
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Figure 8. Arctan-approximated utility functions of the passengers  

in vehicles from 21 to 30 

 

 
Figure 9. Arctan-approximated utility functions of the passengers  

in vehicles from 31 to 35 

 

 
Figure 10. Arctan-approximated utility functions of the passengers  

in vehicles from 36 to 40 
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Table 1. Utilities and number of the passengers in the vehicles, expected utili-

ties in arbitrage and in disagreement, as well as individual solutions 

No. ai (t0)i mi Ei(u|xopt, yopt) Ei(u|xno, yno) xopt,i yopt,i Ei(u| xopt,i, yopt,i) 

1 0.1 6 1 2.894e-1 5.207e-2 23 16 2.969e-1 

2 10 36 2 3.696e-2 2.851e-3 20 19 4.200e-2 

3 20 26 3 1.816e-1 2.500e-2 23 17 1.865e-1 

4 0.2 41 4 1.193e-1 8.270e-3 23 17 1.243e-1 

5 0.35 41 5 9.610e-2 4.141e-3 22 18 9.619e-2 

6 0.6 41 1 8.776e-2 2.196e-3 22 18 8.781e-2 

7 1.2 41 1 8.845e-2 1.020e-3 22 18 8.847e-2 

8 1.2 39 1 2.963e-2 9.828e-4 21 19 5.021e-2 

9 2 41 2 9.176e-2 5.942e-4 22 18 9.177e-2 

10 2.2 40 2 5.494e-2 5.166e-4 21 18 7.088e-2 

11 0.1 120 1 6.330e-1 2.187e-1 20 20 6.460e-1 

12 10 90 3 8.798e-1 5.568e-1 20 20 8.909e-1 

13 20 1 4 7.507e-1 3.352e-1 20 20 7.662e-1 

14 0.2 85 1 8.982e-1 5.388e-1 20 20 9.096e-1 

15 0.35 85 3 9.421e-1 6.983e-1 20 20 9.488e-1 

16 0.6 85 1 9.665e-1 8.148e-1 20 20 9.705e-1 

17 1.2 85 1 9.834e-1 9.058e-1 20 20 9.854e-1 

18 1.2 87 1 9.413e-1 7.335e-1 20 20 9.476e-1 

19 2 85 2 9.901e-1 9.434e-1 20 20 9.913e-1 

20 2.2 84 2 9.943e-1 9.621e-1 20 20 9.951e-1 

21 0.1 48 1 2.026e-1 2.145e-2 24 15 2.294e-1 

22 0.09 58 3 3.370e-1 4.050e-2 26 14 3.616e-1 

23 0.15 63 1 4.336e-1 3.785e-2 20 20 4.900e-1 

24 0.2 68 4 6.795e-1 5.356e-2 20 20 7.680e-1 

25 0.35 78 2 9.462e-1 4.125e-1 20 20 9.549e-1 

26 0.6 48 1 1.125e-1 2.719e-3 24 16 1.758e-1 

27 1.2 58 1 1.266e-1 2.716e-3 29 11 4.032e-1 

28 0.6 63 1 3.509e-1 9.205e-3 20 20 4.977e-1 

29 1.2 68 2 8.731e-1 9.041e-3 20 20 9.554e-1 

30 1.1 78 3 9.848e-1 4.734e-1 20 20 9.873e-1 

31 50 48 1 1.001e-1 3.034e-5 24 15 2.238e-1 

32 50 58 2 1.006e-1 6.370e-5 29 10 4.722e-1 

33 50 63 3 3.006e-1 1.062e-4 32 8 5.964e-1 

34 50 68 2 9.965e-1 2.123e-4 20 20 9.989e-1 

35 50 78 4 9.997e-1 4.994e-1 20 20 9.997e-1 

36 0.10 63 1 4.568e-1 1.136e-1 22 18 4.614e-1 

37 0.10 63 1 4.568e-1 1.136e-1 22 18 4.614e-1 

38 0.10 63 1 4.568e-1 1.136e-1 22 18 4.614e-1 

39 0.10 63 2 4.568e-1 1.136e-1 22 18 4.614e-1 

40 0.10 63 5 4.568e-1 1.136e-1 22 18 4.614e-1 
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The Nash utility criterion (14) is calculated for that part of the absolute Pa-

reto domain (6), which dominates the disagreement point. The results in a 

logarithmic scale are shown on fig. 11. The maximum value of the Nash utili-

ty criterion is 9.907е-56, under the optimal solution (xopt; yopt)=(20;16). In that 

case, 20 vehicles would travel for 69 min in group 1 on the route Start-B-

Finish, 16 vehicles would travel for 65 min in group 2 on the route Start-A-

Finish and 4 vehicles would travel for 44 min in group 3 on the route Start-A-

B-Finish.  

The expected utilities Ei(u|xopt, yopt) for the 40 groups of passengers on the 

arbitrage solution (xopt; yopt)=(20; 16) are given in column 5 of table 1. They 

show substantial improvement compared to the expected utilities Ei(u|xno, yno) 

for the respective passenger groups in the disagreement point (xno; yno)=(40; 

0), which are given in column 6 of table 1. The desired individual solutions (x; 

y), which maximize (10) for each of the 40 groups of passengers, are given in 

columns 7 and 8 of table 1. Their expected utilities Ei(u|xopt,i, yopt,i) are calcu-

lated and given in column 9 of table 1.  

 

 
Figure 11. Nash utility criterion for the absolute Pareto domain  

in a Braess case with N=40 

 

As expected, the individual solutions are better than those reached by the 

Nash criterion. The difference in the expected utilities in columns 9 and 5 may 

be interpreted as the cost of cooperation between the groups of passengers, 

whereas the difference between columns 5 and 6 is the benefit of cooperation. 

The optimal solution, the disagreement point, the absolute Pareto domain and 

the bargaining set are shown on fig. 12. The bargaining set is calculated by 

comparing the expected utilities of all 40 groups of passengers for each pair of 

points from the absolute Pareto domain. After the comparisons, all points, 

whose 40 expected utilities are less or equal than the corresponding expected 
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utilities of the other point in the pair, are excluded from the bargaining set. 

Since the bargaining set depends on the 40 individual utility functions, it can-

not be preliminarily calculated, unlike the absolute Pareto domain.  
 

 
Figure 12. Bargaining set of the solution in the illustrative example 

6 Conclusions 

The transport network planning problem, known as the Braess paradox has 

been discussed in this paper. It represents the case when adding a new branch 

of a road network leads to increased time of arrival. Its generalization for even 

number of vehicles was presented. The possible time for arrival was inter-

preted as a discrete random variable that corresponds to a given distribution of 

vehicles, and those random variables had to be ranked according to prefe-

rence. The optimal Pareto domain was identified by limiting the initial domain 

in several steps. Administrative and arbitrating solutions were described, the 

latter assuming equal preferences of all passengers. However, as those last 

assumptions are quite unlikely in a real setup, the true preferences of the pas-

sengers should be measured. Here, this was performed by using an analytical 

arctan-approximation of the utility function, and five different types of prefe-

rences were described. The Nash procedure of finding arbitration solutions 

was employed to find the optimal distribution of vehicles (the agreement 

point) by maximizing the Nash expected utility criterion. All calculation and 

visualization procedures were performed by original software programs in 

MATLAB 2012a environment, and available free of charge upon request from 

the authors.  

The classical Nash theory applies to the case where several individually ra-

tional players have to allocate a given resource. In case they define their utili-
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ties over the distribution of the resource, as well as their disagreement action, 

then the Nash theory is in position to conclude upon the agreement that the 

players should and would reach. The disagreement point has the meaning of 

the action each player should take in case they do not reach an allocation solu-

tion.  

In the course of application of the theory, two different setups appear. In 

the first setup, referred to as Nash bargaining, the theory is considered de-

scriptive. The players save time by directly reaching an allocation solution 

among themselves by declaring their utilities and disagreement actions. Here, 

the players being obliged to execute the disagreement action if solution is not 

reached are likely to be as realistic as possible when defining that action. But 

in the bargaining case, each player is in position to influence the solution by 

altering her declared utilities over the distribution of the resource so that to 

reach resource allocation as best as possible for her. Declaring true utilities is 

considered irrational, and since they are all rational following the assumptions 

of Nash, they are all going to lie, thus the Nash theory is inapplicable.  

In the second setup, called Nash arbitration, the theory is considered nor-

mative. The players have an arbiter who reaches the fair distribution of the 

resource, and to whom they declare their utilities and disagreement actions. 

Here, the problem of altered utilities is not crucial, as the arbiter is in position 

to correct them in case she thinks they are falsified. This is not the case, how-

ever, with the disagreement point. In this case, arbitrating is obligatory, i.e. a 

solution would always be reached. Therefore the disagreement point has no 

physical meaning as the players are never supposed to actually do it. Yet, the 

disagreement point is part of the Nash equilibrium as shown in (14), therefore 

players are in position to influence the final resource allocation by declaring a 

false disagreement action without any fear of having to execute it. Therefore, 

a player declaring her real disagreement action is actually considered irration-

al, which implies that Nash arbitration is inapplicable.  

In the case discussed, however, the disagreement point has a clear physical 

meaning – if the passengers are not pleased with the decision of the police, 

they would ask for reduction of the regulation, thus arbitration would not ex-

ist. In that case, the individual rational decisions as shown in section 1, are (N; 

0), i.e. they would all choose the route Start-A-B-Finish. 
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Appendix: Finding the absolute Pareto domain 

A1. Notations and types of points in the asymmetric domain 

This Appendix proves consecutively that different parts of the domain 

(5) are dominated. Discussed are the points from the asymmetrical domain 

C D E from Figure 2. The purpose is to limit C D E  to the absolute Pareto 

domain by identifying the dominating points, in accordance with the com-

ments from section 2. The random time of arrival that corresponds to an arbi-

trary point from C D E  is a discrete random variable with either one, or two, 

or three possible values. The following dependencies hold:  

 

TIII<TII<TI    (A1) 

nI nII     (A2) 
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It is convenient to introduce Tmin as the smallest time, for which the respec-

tive number of vehicles is greater than zero, Tmax as the largest time, for which 

the respective number of vehicles is greater than zero, and eventually Tsr as 

the average time, in case the number of vehicles in each group is greater than 

zero, and TI TII. Let nmin be the number of vehicles, for which the time of 

arrival is less or equal to Tmin. Also, let nsr be the number of vehicles, for 

which the time of arrival is less or equal to Tsr, and nmax be the number of ve-

hicles, for which the time of arrival is less or equal to Tmax. It is obvious that 

nmax is always equal to N. There are three types of points that may be identi-

fied in C D E , which shall be analyzed consecutively:  

 

1) Points at the vertices of C D E .  

These are vertices C, D, and E. According to formulae (1)-(3), the time of 

arrival is a discrete random variable with a single value, i.e. it is a constant 

value. Then:  

a) for the vertex C, x=y=0. Then  

Tmin=Tmax=TI=85     (A3) 

nmin=nmax=nI=N     (A4) 

nII=nIII=0.     (A5) 

b) for the vertex D, x=N, and y=0. Then  

Tmin=Tmax=TIII=80     (A6) 

nmin=nmax=nIII=N     (A7) 

nI=nII=0.      (A8) 

c) for the vertex E, x=y=N/2. Then  

Tmin=Tmax=TI=TII =65    (A9) 

nmin=nmax=nI+ nII=N    (A10) 

nIII=0.      (A11) 

 

2) Points on the sides CD, CE, and DE of C D E ; 

According to formulae (1)-(3), the time of arrival is a discrete random va-

riable with two possible values. Then:  

a) for the points on the side CD, x=1, 2, …, N–1, y=0. Then  

Tmin= TIII=40x/N+40    (A12) 

Tmax= 85      (A13) 

nmin=nIII=x     (A14) 

nmax=nI +nIII=N.     (A15) 

b) for the points on the side CE, x=1, 2, …, N/2 – 1, y=x. Then  

Tmin= TII=40x/N+45    (A16) 

Tmax= TI= 85–40x/N    (A17) 

nmin=nII=y=x     (A18) 

nmax= nI +nII =N.     (A19) 

c) for the points on the side DE, x=N/2+1, N/2+2, …, N–1, y= 

=N–x.  Here, TI coincides with TII, i.e. they combine into a single value. Then  
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Tmin= TIII=40(2x–N)/N+40=80x/N   (A20) 

Tmax= TI= TII= 40x/N+45    (A21) 

nmin=nIII=2x – N     (A22) 

nmax=nI +nII+nIII =N.    (A23) 

 

3) Inner points for C D E   

According to formulae (1)-(3), the time of arrival is a discrete random va-

riable with three possible values. Here, x=y+1, y+2, …, N–y–1, and y=1, 2, …, 

N/2–1. Then:  

Tmin= TIII=40(x–y)/N+40    (A24) 

Tsr= TII=40x/N+45    (A25) 

Tmax= TI=85–40y/N    (A26) 

nmin=nIII=x – y     (A27) 

nsr=nII+nIII =x     (A28) 

nmax= nI +nII+nIII =N.    (A29) 

 

For the sake of unity, in the following proofs the dominating point shall be 

denoted (x; y), whereas the dominated would be (x*; y*). The corresponding 

times and vehicle numbers of the latter are denoted 
* * * * * * * * * * * *
I II III min max sr I II III min max srT , T , T ,T ,T ,T ,n , n , n ,n ,n ,n .  

A2. Identifying dominated points from the asymmetric domain 

A2.1. The point (0; 0) 

The point (x*; y*)=(0; 0) is the vertex C. It shall be proven that vertex C is 

dominated by vertex E, which is the point (x; y)=(N/2; N/2). According to 

(A3) and (A9), it follows that *
minT =80>65=Tmax, which proves that  

(N/2; N/2) (0; 0).  

The distributions of both points are shown on Figure 4.  

A2.2. The point (N; 0) 

The point (x*; y*)=(N; 0) is the vertex D. It shall be proven that vertex D is 

dominated by vertex E, which is the point (x; y)=(N/2; N/2). According to 

(A6) and (A9), it follows that *
minT =80>65=Tmax, which proves that  

(N/2; N/2) (N; 0).  

The distributions of both points are shown on Figure A1.  
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Figure A1. Dominance on the point (N; 0), given in solid line, by the point 

(N/2; N/2), given in thick dotted line 

 

A2.3. The point (x*; 0) for x*={1, 2, …, N – 1} 

The points (x*; y*)=(x*; 0) for x*={1, 2, …, N – 1} are inner points for the 

side CD. Their dominated status is proven by dividing into three subtypes.  

A2.3.1. The point (N–1; 0) 

It shall be proven that the point (x*; y*)=(N–1; 0) is dominated by vertex 

E, which is the point (x; y)=(N/2; N/2). According to (A12), *
minT =80–40/N. 

As long as N is at least 4, then *
minT 70. According to (A9), *

minT

70>65=Tmax, which proves that  

(N/2; N/2) (N–1; 0).  

The distributions of both points are shown on Figure A2.  

 

 
Figure A2. Dominance on the point (N–1; 0), given in solid line, by the point 

(N/2; N/2), given in thick dotted line 
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A2.3.2. The point (N–2; 0) 

It shall be proven that the point (x*; y*)=(N–2; 0) is dominated by the 

point (x; y)=(N–1; 1), which is inner to the side DE. According to (A12)-

(A15), *
minT =80–80/N, 1 2

* *
minn N x N N , *

m axT =85. According to 

(A20)-(A23), Tmin=80–80/N= *
minT , nmin/N=1–2/N= *

minn N , Tmax=85–

40/N<85= *
m axT . It follows that  

(N–1; 1) (N–2; 0).  

The distributions of both points are shown on Figure A3.  

 

 
Figure A3. Dominance on the point (N–2; 0), given in solid line, by the point 

(N–1; 1), given in thick dotted line 

A2.3.3. The points (x*; 0) for x*={1, 2, …, N – 3} 

It shall be proven that each of the points (x*; y*)=(x*; 0) for x*={1, 2, …, 

N – 3} is dominated by the point (x; y)=(x*+1; 1), which is inner for to the 

triangle C D E . According to (A12)-(A15), *
minT = 40x*/N+40, *

minn N =x*/N, 

*
m axT =85. According to (A24)-(A29), Tmin= 40x*/N+40= *

minT , nmin/N = x*/N=

*
minn N , Tsr=45+40x*/N+40/N, nsr/N =x*/N+2/N, Tmax=85–40/N<85= *

m axT . It 

follows that 

(x*+1; 1) (x*; 0) for x*={1, 2, …, N – 3}.  

The distributions of both points are shown on Figure A4.  
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Figure A4. Dominance on the point (x*; 0), given in solid line, by the points 

(x*+1; 1) for x*={1, 2, …, N – 3}, given in thick dotted line 

 

A2.4. The point (x*; x*) for x*={1, 2, …, 3N } 

The points (x*; y*)=(x*; x*) for x*={1, 2, …, 3N } are inner points for 

the side CE. Their dominated status is proven by dividing into two subtypes.  

A2.4.1. The points (x*; x*) for x*={1, 2, …, 3 1N } 

It shall be proven that the point (x*; y*)=(x*; x*) is dominated by the point 

(x; y)=(2x*; x*) that is inner for the triangle C D E . According to (A16)-

(A19), *
minT =40x*/N+45, *

minn N =x*/N, *
m axT =85–40x*/N. According to 

(A24)-(A29), Tmin= 40x*/N+40< *
minT , nmin/N = x*/N= *

minn N , Tsr=45+80x*/N, 

nsr/N=2x*/N, Tmax=85–40x*/N= *
m axT . It follows that 

(2x*; x*) (x*; x*) for x*={1, 2, …, 3 1N }.  

The distributions of both points are shown on Figure A5.  

 
Figure A5. Dominance on the point (x*; x*), given in solid line, by the points 

(2x*; x*) for x*={1, 2, …, 3 1N }, given in thick dotted line 
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A2.4.2. The point (N/3; N/3) if 6 divides N 

It shall be proven that the point (x*; y*)=(N/3; N/3) is dominated by the 

point (x; y)=(2N/3; 2N/3) that is inner for the side DE. Of course, if those two 

points are to exist, N should be divisible to 6.  According to (A16)-(A19), 
*
minT =175/3, *

minn N =1/3, *
m axT =225/3. According to (A20)-(A23), 

Tmin=160/3<175/3= *
minT , nmin/N=1/3= *

minn N , Tmax=225/3= *
m axT . It follows 

that 

(2N/3; 2N/3) (N/3; N/3) if 6 divides N.  

The distributions of both points are shown on Figure A6.  

 

 
Figure A6. Dominance on the point (N/3; N/3), given in solid line, by the 

points (2N/3; 2N/3) if 6 divides N, given in thick dotted line 

 

A2.5. The points (x*; N-x*) for x*={ 13 16N , 13 16N +1, …, N–1}. 

It shall be proven that the points (x*; y*)=(x*; N-x*) for x*={ 13 16N , 

13 16N +1, …, N–1}, which are inner points for the side DE, are dominated 

by the point (x; y)=(N/2; N/2), which is the vertex E. According to (A20), *
minT

=80x*/N. According to (A9), Tmax=65. It shall be proven that Tmax
*
minT . Let’s 

solve the inequality:  
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 x*={ 13 16N , 13 16N +1, …, N–1} does belong to the Domain 

and is a solution 

 

It follows that 

(N/2;N/2) (x*;N-x*)for x*={ 13 16N , 13 16N +1,…,N–1}. 

The distributions of both points are shown on Fig. A7.  

 

 
Figure A7. Dominance on the points (x*;N-x*) for  

x*={ 13 16N , 13 16N +1,…,N–1}, given in solid line, by the points (N/2; N/2), 

given in thick dotted line 

A2.6. The points (x*; y*) for y*={1,2,…, 3 16 1 2N / }, and x*={y*+

5 8N , y*+ 5 8N +1,…, N–y*–1}.  

It shall be proven that the points (x*; y*) for y*={1,2,…, 3 16 1 2N / }, 

and x*={y*+ 5 8N , y*+ 5 8N +1,…, N–y*–1}, which are inner points for 

the triangle C D E  are dominated by the point (x; y)=(N/2; N/2), which is the 

vertex E. According to (A24), *
minT =40(x*–y*)/N+40. According to (A9), 

Tmax=65. It shall be proven that Tmax
*
minT . Let’s solve the inequality, where 

x* is unknown, and y* is a parameter:  

Domain:  x*={y*+ 5 8N , y*+ 5 8N +1,…, N–y*–1} 

Parameter values: y*={1, 2,…, 3 16 1 2N / } 

Tmax
*
minT  

65 40(x*–y*)/N+40 |*(N/40)>0 

x* 5N/8+ y*  x* 5 8
*

N / y ;  does not belong to the Domain and 

is not a solution 
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 x*={y*+ 5 8N , y*+ 5 8N +1,…, N–y*–1} does belong to the Do-

main and is a solution.  

This statement uses the fact that y*+5N/8 N–y*–1 y* 3N/16–1/2, 

which is true because 

 y* 3 16 1 2N / / 3N/16–1/2.  

It follows that 

(N/2;N/2) (x*;y*) for y*={1,2,…, 3 16 1 2N / }, and  

x*={y*+ 5 8N , y*+ 5 8N +1,…, N–y*–1} 

The distributions of both points are shown on Fig. A8.  

 

 
Figure A8. Dominance on the points (x*; y*) for 

 y*={1,2,…, 3 16 1 2N / }, and x*={y*+ 5 8N , y*+ 5 8N +1,…, N–y*–1},  

given in solid line, by the points (N/2; N/2), given in thick dotted line. 
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